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Abstract 
 

How prevalent are severe software vulnerabilities, how fast do software users respond to the availability 
of secure versions, and what determines the variance in the installation distribution? Using the largest 
dataset ever assembled on user updates, tracking server software updates by over 150,000 medium and 
large U.S. organizations between 2000 and 2018, this study finds widespread usage of server software 
with known vulnerabilities, with 57% of organizations using software with severe security vulnerabilities 
even when secure versions were available. The study estimates several different reduced-form models to 
examine which organization characteristics correlate with higher vulnerability prevalence and which 
update characteristics causally explain higher responsiveness to the releases of secure versions. The 
disclosure of severe vulnerability fixes in software updates does not jolt all organizations into installing 
them. Factors related to the cost of updating, such as whether the software is hosted on a cloud-based 
platform and whether the update is an incremental change or a major overhaul, play an important role. 
Observables cannot easily explain much variation. These findings underscore the urgent need to 
incorporate organizations' relative (in)attentiveness to act on software update releases into the design of 
cybersecurity policies. 
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1. Introduction 

Over the past twenty years, disruptive cyberattacks on companies have increased. (EY Americas 

2021). Many cyberattacks exploit vulnerabilities in the software running on companies’ servers, even 

when the software vendors previously acknowledged the vulnerabilities and provided updates to fix them 

(Ranger 2019). For example, in 2017, the UK’s National Health Service fell victim to a cyberattack that 

exploited a vulnerability in their server software. A software update had been available to fix that 

vulnerability for over a month, but it had not been installed (Acronis International 2017; Palmer 2017). 

The cyberattack resulted in the cancellation of thousands of operations, including those of emergency 

patients. In the same year, attackers exploited a vulnerability in the server software hosting the Equifax 

website, exposing the information of over 143 million individuals (Goodin 2017). Again, a patch had 

been available for two months. In the wake of a ransomware attack on Atlanta in 2018 that halted many of 

the city’s operations, an audit uncovered 1,500 to 2,000 vulnerabilities in the city’s system. Some had 

been present for almost a year. (Harvey 2018; Goldenberg and Zlatev 2022). 

These events garnered media attention and spurred calls for increased investment and diligence in 

cybersecurity (National Institute of Standards and Technology 2018). The policy proposals considered in 

the wake of these incidents took different forms. Some policies made software vendors liable for the cost 

that users face from installing patches. (August and Tunca 2011).1 Some policies, such as mandated 

disclosure, encouraged vendors to release updates and patches more quickly (Arora, Telang, and Xu 

2008; Arora et al. 2010). Others suggested restricting the frequency of software update releases and the 

amount of information software vendors disclose about vulnerabilities, decreasing the potential for 

malicious actors to learn from the vulnerability disclosures (Rescorla 2005; Mitra and Ransbotham 2015). 

Whether or not these policies are beneficial depends on three related factors: untested assumptions 

about the prevalence of security vulnerabilities in installed and actively used server software, the 

 
1 August and Tunca (2011) study the provisioning of patches in an environment with profit-maximizing software 
vendors. Charging the “software vendor” for patch costs is impossible in our study setting. The software is open-
source and created by a group of volunteers and a non-profit foundation.   
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determinants of organization decisions regarding whether to install software updates to fix vulnerabilities, 

and the responsiveness of organizations to attributes of the updates released, such as whether they respond 

faster to a high-impact vulnerability. These factors are consequential. Prevalence matters because 

mandating disclosure of vulnerabilities may decrease (increase) malicious attacks if users largely follow 

(ignore) mandates to install updates. The determinants of vulnerabilities matter as well. If they positively 

(negatively) correlate with the sensitivity of data and the related value of installing security software 

updates, then a policy of taxing (subsidizing) software usage could dissuade (encourage) organizations 

with poor (good) updating practices from using vulnerable software. Finally, suppose organizations adopt 

routines that respond to (ignore) information about the severity of risks. In that case, disclosing such 

information may speed up (have no effect on) user patching and reduce (increase) cybersecurity risks.    

There is little empirical evidence on any of these three factors. That gap reflects the challenges of 

collecting and analyzing data about company software updating decisions over time and across different 

circumstances. Previous research and industry reports relied on data and surveys from small cross-

sections of firms (AimPoint Group 2020; Positive Technologies 2020), but such data does not fully 

inform the discussion. For example, annual surveys of IT installations (e.g., Harte Hanks) lack 

information on the precise timing of update installations. At the same time, retrospective reports describe 

firms that have experienced hacking incidents but do not paint a picture of all firms. Indeed, to our 

knowledge, no data set provides information on software updates’ prevalence, determinants, and 

responsiveness across a broad spectrum of organizations and over an extended period. Our goal is to 

address this gap. 

This study analyzes detailed panel data that tracks vulnerabilities in web server software. 

Vulnerabilities in web server software offer a valuable lens for several reasons. Web servers are 

ubiquitous and critical to the modern web-based commercial Internet. Millions of firms in the United 

States and hundreds of millions across the globe use web servers to support billions of web pages, 

including those serving sensitive financial and personal information (Greenstein and Nagle 2014). In 

addition to highlighting the prevalence of vulnerabilities, many server software updates include features 
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and bug fixes that improve the experience of Internet users. Increasing the speed companies respond to 

software updates could support productivity improvements and enhance the user experience. 

The analysis focuses on organizations using the Apache HTTP Server (hereafter called “Apache”), 

the most popular web server software in the first few decades of the commercial Internet. Apache is also 

ideal for study because it publishes detailed information about its versions, updates, and vulnerabilities. 

From 2000 to 2018, 28 severe vulnerabilities and 130 less severe vulnerabilities were discovered in 

Apache. Each vulnerability reported to Apache developers was scored along multiple dimensions. During 

the same period, 115 software updates for Apache were released, along with a list of the security 

vulnerabilities being corrected, the bugs fixed, and the new features included. Apache is open source, and 

each update was made freely available to anyone online without restrictions on who could use it or how it 

could be used. That also has advantages for empirical analysis of the timing of installing these software 

updates, which is not confounded by the changes in the pricing of the software or the policies regarding 

the availability of updates.   

The measurement of updates comes from raw data recorded on the Internet Archive’s Wayback 

Machine, which has routinely visited millions of websites periodically and recorded the content and 

metadata about that site, including the name and version number of the server software hosting each 

website. By tracking the server software used to host each organization’s website over time, it is possible 

to observe when an organization updates its server software or when an organization chooses to forgo 

updating and instead use the aging or vulnerable software. Our data include the websites of over 150,000 

U.S. medium to large companies and organizations using Apache between 2000 and 2018. This is the 

most extensive data set assembled about user installations of software updates. Section 4 explains how the 

dataset is compiled after Sections 2 and 3 review relevant theory and background.  

The analysis proceeds along three related lines. First, Section 5 assesses the prevalence of security 

vulnerabilities in the server software of organizations using Apache and finds widespread use of server 

software with severe security vulnerabilities. Between 2000 and 2018, 57% of organizations used 

software with severe security vulnerabilities even when secure versions were available. Almost every 



 4 

Apache HTTP server hosting the organizations’ homepages has operated with a publicly disclosed severe 

security vulnerability for some months. In other months, less than 25% contained one or more severe 

vulnerabilities. While the precise configuration of companies’ server systems may prevent some of these 

vulnerabilities from being exploited by malicious actors, this finding suggests that a surprisingly large 

number of organizations operate their websites using outdated and potentially insecure software. 

Second, Section 6 analyzes the determinants of organization decisions regarding whether to install 

software updates. Linear probability and Poisson regression analysis of the number of vulnerabilities 

show that factors related to the cost of updating, such as whether a company hosts their server on a cloud 

provider, can explain more of the variation than factors associated with the value of cybersecurity, such as 

being in an industry likely to handle sensitive personal data. In contrast, firms that stand to lose the most 

from a cyberattack, such as high-traffic websites and organizations whose websites have monetization 

technologies, are surprisingly more likely to have vulnerabilities in their software.  

After the econometric specification controls for various organizational characteristics, few 

observables can account for the lion’s share of variation in organizations’ vulnerability prevalence. For 

example, an organization’s industry, geography, and revenue do not strongly predict whether the 

organization accumulates vulnerabilities. Instead, persistent unobservable differences between 

organizations drive varying amounts of vulnerabilities accumulated. 

Section 7 explores the responsiveness of organizations to attributes of the updates released, such as 

whether they respond faster to an especially severe vulnerability. It documents the characteristics of 

organizations and attributes of the Apache software updates associated with the faster or slower 

installation of those updates in the presence of newly discovered severe vulnerabilities. The best-fitting 

hazard model is a stratified hazard specification, which accounts for persistent unobservable differences 

between organizations. The estimates from this model show that organizations are faster at installing 

minor updates or updates that fix multiple severe security vulnerabilities. They are slower to install 

multifaceted and complex updates containing minor bug fixes and feature improvements. 
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The final section of this article, Section 8, discusses the policy and managerial implications of the 

findings. Since most organizations are predominantly inattentive to vulnerability disclosures, a policy 

mandating immediate, full disclosure may not be optimal from a societal standpoint. Policymakers should 

consider the delicate balance between alerting potential attackers and informing users of risks. A viable 

policy could involve releasing updates with key details emphasized, such as the exploitability of a 

vulnerability, while withholding less critical information, like the specific technical details of the fix. 

Although not a complete solution—since malicious actors might still investigate and analyze the source 

code of updates—a carefully designed limited disclosure policy could, to some extent, slow attackers 

(Mitra and Ransbotham, 2015) and benefit users who are slow to respond, compared to full disclosure. 

Our estimates also suggest that solutions should be unbundled. Complex security updates that incorporate 

many different minor bug fixes and feature improvements could hinder timely updating. It may be 

socially more efficient to separate security fixes from other types of fixes and enhancements—simple is 

better. Furthermore, the estimates imply that organizations should pay more attention to how technical 

complexity can inhibit their ability to stay secure. Reducing the cost of updating, such as by utilizing 

cloud hosting services, could facilitate more rapid updating. 

This examination fills a critical empirical gap in cybersecurity literature. Much of the prior literature 

focused on software vendors (Arora, Nandkumar, and Telang 2006; Arora, Telang, and Xu 2008; August 

and Tunca 2011; Mookerjee et al. 2011; Mitra and Ransbotham 2015). With exceptions, primarily based 

on interviews and surveys, most papers portray software users’ decisions of when to install updates as 

deterministic or a function of update quality (Arora, Telang, and Xu 2008). No empirical evidence 

verifies these behavioral assumptions.  

Previous work has acknowledged that not all firms immediately install patches after their release. 

However, these findings are based on limited descriptions of user-updating behavior from the selected 

firms.  For example, Arbaugh, Fithen, and McHugh (2000) examined data on the vulnerabilities exploited 

by hacked firms. They lacked data on the fraction of firms operating with known vulnerabilities that did 

not get hacked. A body of security literature has examined the prevalence of vulnerabilities and attacks 
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within the web technology stack and user heterogeneity (Vasek, Wadleigh, and Moore 2016; 

Tajalizadehkhoob et al. 2017; West and Moore 2022; Jenkins et al. 2024). This paper contributes by 

linking vulnerability prevalence to a broad range of organizational, website, and software update 

characteristics and extending the analysis across many organizations over a substantial period.   

This study also contributes by explaining the factors influencing the rate at which organizations 

install software updates. Like Dey, Lahiri, and Zhang (2015), this study’s approach builds on the long-

noticed phenomenon of considerable heterogeneity in the regular updating cycle and organizations’ 

approaches to installing software updates (Arbaugh, Fithen, and McHugh 2000). Some companies 

routinely update their server software, while others have a more ad-hoc approach. Among companies that 

wish to eventually adopt software updates, a variety of frictions and costs can also cause delays in 

installing those updates (Dissanayake, Jayatilaka, et al. 2022; Dissanayake, Zahedi, et al. 2022; August 

and Tunca 2006; August, Niculescu, and Shin 2014; Kang 2022; Tiefenau et al. 2020).2 This approach to 

empirical analysis enables inference as to why some organizations keep their server software close to the 

technological frontier and install updates promptly. In contrast, others seem to plod along, accumulating 

vulnerabilities.  

In addition, this study answers a long-standing call for understanding the factors influencing 

organizations’ responsiveness to the release of software updates. In their research on the tradeoffs of 

mandating faster disclosure of software vulnerabilities, Arora, Nandkumar, and Telang (2006) 

acknowledge the possibility that releasing a patch could increase the number of cyberattacks and called 

for empirically understanding the factors that hasten or slow user-patching as a promising area for future 

research. This study leverages the quasi-random discovery of vulnerabilities to analyze longitudinal data 

 
2 Kang (2022) emphasizes user incentives for upgrading enterprise software with many complements and the costs 
of accounting for such operational complexity. In a for-profit setting, August et al. 2014 investigate optimal trade-
offs between the cloud-supported provision of upgrades or on-premises upgrades in the face of heterogeneous user 
valuation of quality. For-profit firms target their promotions to segments that demand low, medium, or high security, 
depending on the risks and costs of alternatives. Relatedly, August and Tunca, 2006 analyze incentives to patch in 
both a for-profit and free setting if upgrade behavior reflects forward-looking incentives but ignores externalities on 
others. In the for-profit environment, incentives to fix are too low, requiring vendor subsidies to induce optimal 
behavior. With freeware, the incentives are too low (high) when the risks and costs are minor (significant).  
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to gain causal inferences on the factors impacting update decisions. This gives us insights into the 

attributes of software updates that influence server updating. 

Only two prior empirical research studies have examined longitudinal investment in cybersecurity 

and linked it to outcomes. Li, Yoo, and Kettinger (2021) examined hospital adoption of security software 

and investment in related activities while Liu, Huang, and Lucas (2017) examined higher education and 

governance and associated actions. Both papers link these security investments to the propensity to suffer 

a security incident and exogenous organizational features and processes, using cross-sectional variance to 

infer causal determinants.3 Unlike these, the data used in this analysis allows us to infer the relatively 

precise time each organization installed each software update released between 2000 and 2018. This level 

of detail enables us to estimate the impact of factors that increase (decrease) organizations’ updating rate. 

2. Theory of Server Software Users’ Response to Software Updates 

The prevalence of users operating software with known vulnerabilities, the determinants of decisions 

regarding whether to install software updates and the responsiveness of users to the release of updates that 

fix vulnerabilities are consequential factors for evaluating cybersecurity policies. This section provides a 

sketch of why these three factors impact the effectiveness of policies regarding cyber security proposed in 

the literature and motivates this study’s empirical investigations of them.4 

Prevalence.  The prevalence of known vulnerabilities is a crucial empirical primitive to document 

and analyze. Arora, Caulkins, and Telang (2006) recommend that policymakers mandate that software 

vendors disclose known vulnerabilities within a relatively short time to motivate those vendors to produce 

 
3 Li, Yoo, and Kettinger (2021) stresses the returns at organizations that invest in on-premises processes, such as 
anti-virus, intrusion detection, and authentication. Liu, Huang, and Lucas (2017) found behavior consistent with a 
tradeoff between granting autonomy and flexibility in using information systems and enforcing standardized, 
organization-wide security protocols—the more complex the computing environment, the higher the returns on 
centralized governance that limits vulnerabilities. 
4 While the models vary somewhat, most have a similar setup. Typically, these models represent firms’ decisions 
regarding installing a security update as a static problem. Firms have idiosyncratic values when using a particular 
piece of software. When a patch is released, firms that install the patch pay a fixed cost of patching but gain 
protection from the associated security vulnerability. In contrast, firms that do not patch face the expected cost of a 
hack of their systems. For vulnerabilities with negative externalities, such as when a hacked system may be used in a 
DDOS attack, the probability of the attack may be proportional to the fraction of other firms who also do not patch. 
In addition, the expected damage from an attack may be proportional to the firm’s value from its system. 
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and release updates quickly. The benefits of disclosure must be weighed against the detrimental effects. 

The downside is obvious: mandated disclosure provides malicious actors information that could be useful 

for hacking systems that have yet to install the updates to fix associated vulnerabilities. However, if most 

organizations install updates when vulnerabilities are disclosed, then mandated disclosure will increase 

the provisioning of updates and improve the security of firm software. If most organizations forgo 

installing available updates, policymakers must be cautious with such a policy. As Choi, Fershtman, and 

Gandal (2010) note, mandated disclosure is beneficial only in contexts where malicious actors are slower 

to discover vulnerabilities than software vendors are to issue patches and users are to install them.  

Determinants. Why does a population of software users display different prevalences of 

vulnerabilities within their installed software? Understanding the determinants of firm decisions regarding 

installing software updates, as well as the correlations between organization attributes and the prevalence 

of vulnerabilities, are essential for evaluating cybersecurity policies. 

August and Tunca (2006) suggest several mechanisms to improve user incentives to install updates 

and patch vulnerabilities, including patching rebates and taxing software users to dissuade low-valuation 

firms who are unreliable patchers from abandoning the software rather than using it without installing 

updates. The optimality of those mechanisms depends on both the cost of patching and the value risked 

by not patching. For example, for freeware, August and Tunca (2006) conclude that a usage tax is the 

most effective policy except when both patching costs and value at risk are low, in which case a patching 

rebate prevails. Similarly, Cavusoglu, Cavusoglu, and Zhang (2008) study coordination mechanisms 

through which software vendors and users jointly manage patch release and adoption. They suggest that 

the effectiveness of the proposed mechanisms, namely cost sharing and liabilities, also depends on the 

cost of patching and the value at risk. If a large firm stands to lose significantly when a vulnerability is 

exploited and updates more frequently, then the socially optimal cost-sharing scheme between the vendor 

and that firm would have the vendor bearing less of the cost.  

Responsiveness. The preceding concern directs attention to explaining why some organizations 

tolerate more vulnerabilities than others. A related issue focuses on understanding why organizations 
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respond more promptly to specific software updates than others and what factors influence this 

variability. Responsiveness is a critical element of many models used to evaluate cybersecurity policy. 

Mitra and Ransbotham (2015) assess the optimal amount of information software vendors should 

disclose in updates. This decision involves a trade-off. On the one hand, as shown in Ransbotham, Mitra, 

and Ramsey (2012), providing information about vulnerabilities gives malicious actors information that 

could be used to attack systems. On the other hand, providing information about vulnerabilities may also 

instigate more organizations to install updates and patches if the details about the vulnerability frighten 

the organizations regarding the risks of not installing the associated updates. Moreover, disclosing 

information about new functionalities and features in software updates, in addition to vulnerability fixes, 

could either signal significant costs related to installation or the additional value of updating. Whether 

providing detailed information about vulnerabilities or new functionalities will be beneficial depends on 

whether detailed information and what kind of information induces firms to install updates. 

3. Setting 

This study focuses on the Apache HTTP Server software and the organization that supports it, the 

Apache Software Foundation (ASF). Four reasons motivate this focus. First, as the second most popular 

open-source project after Linux, Apache represents a significant component of the digital economy. 

Second, the ASF’s processes for reporting, disclosing, and rectifying security vulnerabilities reflect the 

security practices typical of open-source software. Third, potentially severe and economically significant 

consequences could result from poorly secured Apache server software, so the setting has policy 

importance. Lastly, the setting enables the collection of highly detailed data on usage, vulnerability status, 

and updating behavior for a large group of U.S. organizations, enabling empirical analysis. 

Server software like Apache is a computer program that enables users to host a website. When an 

individual visits an organization’s website, the individual’s web browser sends a request to that 

organization’s server. The server processes the request using server software that determines which 

content to send back to the individual. For example, after an individual connects to Amazon.com, the 

Amazon server software determines which products and prices to display to that individual. Similarly, 
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after an individual connects to their bank’s website and accesses their online banking accounts, the server 

software transmits the individual’s login information and other sensitive personal financial data between 

the individual’s web browser and the bank’s backend software. 

Apache’s emergence as a popular server software makes it ideal for open-source and 

cybersecurity studies. Apache descended from the first server software. In 1993, the National Center 

for Supercomputing Applications (NCSA) at the University of Illinois developed a computer 

program called the NCSA HTTPd server, which supported sharing content on the newly diffusing 

World Wide Web. NCSA made HTTPd available as shareware within academic and research 

settings, along with the underlying code. HTTPd’s adoption spread quickly, partly because the 

servers did not restrict the usage or modification of the software. Many web administrators took 

advantage by adding improvements as needed. In 1995, different teams of developers decided to 

coordinate their efforts into one server known as Apache (because it was “a patchy web server”). The 

University of Illinois then transferred the development to the ASF without licensing or restrictions. 

Apache became popular as the commercial internet grew. Murciano-Goroff, Zhuo, and Greenstein 

(2021) found that Apache was the most popular server software and powered 40% of the websites of 

medium to large U.S. organizations between 2000 and 2018.  

The ASF coordinates the development of the Apache server software, receives reports of 

vulnerabilities, orchestrates the disclosure of vulnerabilities, and releases software updates to 

mitigate those vulnerabilities. Their vulnerability handling process has been typical of open-source 

software.5 In the most standard scenario, the ASF accepts reports from users about potential 

vulnerabilities. A team of security experts vet these submissions, known as reported vulnerabilities. 

After evaluating a reported vulnerability, the ASF initially keeps the reported vulnerability secret 

from the public so malicious actors are kept from being tipped off about its existence. At the same 

time, teams of developers develop a fix. When the ASF believes it is prudent to do so, it publicly 

 
5 The statement for this process can be found at https://www.apache.org/security/. To the best of our knowledge, this 
process has not changed substantially since the founding of the Apache Software Foundation. 
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discloses the vulnerability. We refer to these as disclosed vulnerabilities. The ASF presumes Apache 

users are vigilant in monitoring their systems for vulnerabilities. When a fix for a vulnerability is 

developed, the ASF releases the fix as part of a new version of Apache. Users are responsible for 

deciding when to update their software, mitigating the risk of exploitation by malicious actors. 

While this is the process that the ASF hopes will occur, some vulnerabilities are handled outside this 

procedure. Some vulnerabilities are discovered when a user notices and discusses problems with the 

program without knowing the situation, indicating an underlying vulnerability. In those cases, the date the 

vulnerability is reported and the date the ASF publicly discloses the vulnerability may be the same, and 

the ASF may disclose the vulnerability before a software update with the fix is ready to be released. 

Many Apache vulnerabilities have severe consequences. Using data feeds provided by the ASF, the 

National Institute of Standards and Technology (NIST) scores vulnerabilities based on their potential to 

harm users.6 We call vulnerabilities “severe” when the vulnerabilities score “high” for severity in the 

scoring system. These severe vulnerabilities are particularly harmful for two reasons. First, these 

vulnerabilities are easily exploitable. According to the scoring system, most severe security vulnerabilities 

do not require local access to the system to perform the attack; attackers can perform the attack over the 

network and often need no or little authentication to access and exploit the vulnerability. Moreover, once 

exploited, these vulnerabilities can result in significant losses. These include and are not limited to partial 

or total disclosure of user information, modifying some or all the files in a system, reduced performance, 

or a complete system shutdown (Mell, Scarfone, and Romanosky 2007). As of August 1, 2018, among the 

158 Apache vulnerabilities reported, 28 vulnerabilities scored “high” in severity. 

Beyond Apache’s widespread use, its process for managing vulnerabilities, and its cybersecurity 

policy significance, the context is enriched by the availability of data on Apache usage and update 

practices among a broad array of U.S. organizations. The ASF has made public extensive information on 

 
6 The ASF submits Apache vulnerabilities to the Common Vulnerabilities and Exposures (CVE), an international, 
community-based data registry. Using CVE’s data feed, the NIST maintains the National Vulnerabilities Database 
(NVD). When a vulnerability is reported to CVE, it is entered in the NVD, and a score is computed based on the 
Common Vulnerability Scoring System (CVSS). https://nvd.nist.gov/vuln-metrics/cvss# 
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each Apache version’s vulnerabilities, fixes, and feature enhancements to enable precise measurement of 

users’ vulnerability and fix status. These data aspects will be elaborated on in the following section. 

4. Data 

This section explains the essential and ancillary data sources. A summary of data sources is 

presented in Table 1. We defer the construction of our various samples to their respective sections later. 

4.1. Key data source – server software usage panel of U.S. organizations 

The critical data source is a broad panel data set that tracks server software used by medium to large 

organizations in the U.S. between 2000 and 2018.  It records the usage of Apache and other server 

software, including Microsoft’s IIS and Nginx, and tracks the installation of updates over time. 

This panel data results from an extensive data collection process. It begins with information on all 

organizations in the Bureau van Dijk Mint Global database that have at least 50 employees in the U.S. and 

listed websites. Each organization's estimated number of employees, revenue, industry, and headquarters 

location are available. We treat organizations with the same website domain as one organization. 

The Universal Resource Locator (URL) for each organization between 2000 and 2018 is matched 

with information from the Internet Archive (IA) Wayback Machine. The IA, a non-profit organization, 

has routinely scanned millions of publicly facing websites for the past two decades and taken snapshots of 

the content on those sites. When an individual connects to a website, the server software that hosts the site 

responds with the site’s content and metadata about the server software. This metadata often contains the 

name of the server software and the server software version number (e.g., Apache 1.3.6).7 The responding 

server also communicates its IP address, a sequence of numbers indicating where the server is located. 

The IA collects and stores this metadata, the IP addresses, and the date of each scan. We compiled the 

 
7 Users have a choice regarding how much information their server response headers show about their server 
software, ranging from no information to complete information, including the name, version, and operating system. 
Setting anything less than showing the server’s name and version is not recommended. As the ASF puts it, “… 
[Obscuring server header] makes it more difficult to debug inter-operational problems. Also, note that disabling the 
Server header does nothing to make your server more secure. The idea of ‘security through obscurity’ is a myth and 
leads to a false sense of safety.” See https://httpd.apache.org/docs/2.4/mod/core.html#servertokens. 



 13 

server software name, version number, IP address, and the date recorded in the metadata for each IA scan 

of the organizations in the sample of U.S. organizations. 

The IA’s scanning frequency is irregular. Sometimes, a site is scanned multiple times within a 

month; at other times, it may be scanned only once over several months. We retain only the first scan of 

the month for any organization with multiple scans. For sites scanned less frequently than monthly, this 

irregularity poses challenges to precisely measuring when updates occur. Although this does not affect 

much of the empirical analyses, the empirical study of how quickly organizations respond to available 

updates will be limited to a subset of organizations where the time to update can be precisely measured. 

The empirical analysis will focus on Apache due to the abundance of publicly available information 

regarding its vulnerabilities, fixes, and feature enhancements. Equivalent data is unavailable for Microsoft 

IIS. We supplement with information about other organizational features and website characteristics. 

4.2. Apache version characteristics, including vulnerability and fix status 

It is necessary to understand how the versions of Apache are numbered. Apache versions are 

identified by three numbers separated by dots, for example, Apache 1.3.37. The first two numbers, such 

as Apache 1.3, represent the major version. Each major version introduces significant improvements in 

performance and functionality. Apache has had several major stable releases, including Apache 1.3 in 

1998, Apache 2.0 in 2002, Apache 2.2 in 2005, and Apache 2.4 in 2012. The ASF simultaneously makes 

minor updates to various major versions, providing vulnerability fixes and incremental improvements. 

The third number in the version denotes the minor version within the major version. For instance, Apache 

2.4.1 was released in February 2012, followed by 2.4.2 in April and 2.4.3 in August of the same year.  

For each minor version, it is possible to gather information about its vulnerabilities from the ASF 

and NIST, including each vulnerability’s severity, the date it was reported, the date it was disclosed to the 

public, and the release dates of new versions that fix the vulnerability. This enables determining whether 

each observation of an Apache minor version in the server usage panel had a reported, disclosed, or fixed 

severe security vulnerability at any given time and whether an updated major or minor version addressing 

the vulnerability was available then. In addition to vulnerabilities, we parsed Apache’s changelogs, which 
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are documents summarizing changes made in each software version update, to obtain the number of new 

and improved features added to each new minor version compared to the previous minor version. 

Based on the Apache version number, our vulnerability measure is not equivalent to the actual attack 

surface. This discrepancy arises due to the possibility of users taking alternative measures for 

vulnerability mitigation. For example, users may develop their own patches that address the vulnerability 

without changing the version number. Appendix A.4 explains the practice of backporting, which could 

secure the software for the short term without altering the version number. While we believe that 

backporting can alleviate some security concerns in the short run for a subset of users, we do not think 

this practice would significantly alter the core findings of our paper, as explained in Appendix A.4. 

4.3. Organization Characteristics 

The Bureau van Dijk Mint Global database provides a cross-sectional snapshot of the estimated 

number of employees, revenue, industry, and location for all organizations in the sample. The publicly 

traded firms have additional data about their annual operations. The data for these firms come from 

Compustat and cover the full panel of U.S. public firms annually. This data contains a wide range of 

organizational characteristics, such as total assets, capital expenditure, cash flow, and income, allowing us 

to examine organizational factors that might affect updating decisions. The data’s temporal dimension 

also enables us to study the effects of financial changes within organizations. However, using this data 

source reduces the sample size, given that a small fraction of organizations in the sample are public firms. 

Additional organizational characteristics are relevant to cybersecurity. The scale and complexity of 

an organization’s IT operations are measured by the number of personal computers owned, the number of 

IT staff, the IT budget, and the software budget from Harte Hanks for 2017. Data from Harte Hanks also 

measures whether a subset of organizations outsourced their IT operations between 2005 and 2009.8  

Data from Privacy Rights Clearinghouse’s Data Breach Chronology is used to examine if data 

breach disclosures by organizations in the same geographic or industry sectors prompt others to secure 

 
8 Harte Hanks expanded their data collection gradually over time, and data in early years had limited mapping with 
our panel. The firm also only compiled data on IT outsourcing for a select group of organizations during 2005-2009. 
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their software. This data is the most comprehensive public source for breach information. In the U.S., data 

breach notification laws are enacted across all states, with most states adopting these laws in 2005 and 

2006. This data source aggregates disclosures from media, state attorneys general offices, and breach 

disclosure trackers. It includes 2,366 breaches from 2005 to 2018, detailing the organization, disclosure 

date, state, and industry. For 63% of these breaches, the number of affected records was also reported. 

4.4. Website Characteristics 

To gauge an organization’s website traffic, we obtained Alexa’s traffic rankings for the top one 

million websites annually available to us from 2010 to 2018.  

The IP address for a website enables the determination of whether an organization’s website server 

software is likely cloud-based. 9 We obtained the IP addresses associated with major cloud providers and 

checked whether each organization’s IP address belongs to a cloud provider. We did this for the major 

cloud providers Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform. 

For a subset of the organizations’ websites in the dataset, we have data on the web technologies used 

on those sites gathered from the HTTP Archive, which analyzed websites’ technical attributes using an 

open-source tool developed by Wappalyzer starting in 2016. The data captures technology categories 

fundamental to website architecture, such as web frameworks and databases, as well as those supporting 

monetization and e-commerce, including marketing automation and payment processors. This information 

helps us construct proxies for the websites’ technical complexity and the organizations’ intent to monetize 

their websites.  

5. Prevalence 

5.1. Sample Construction 

We apply two restrictions to the server usage panel dataset. First, the data set retains only the 

observations where Apache was used as the server software, excluding data related to other server 

 
9 We used snapshots of IP addresses associated with AWS, Microsoft Azure, and Google Cloud Platform taken on 
March 25, 2020, August 13, 2023, and August 14, 2023, respectively. Historical IP ranges of these cloud services 
are not available to the best of our knowledge. 
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software like IIS and Nginx. Second, the analysis applies only to observations where the complete 

Apache version number has been captured in the format of three numbers separated by dots. Although the 

ASF recommends that Apache respond to requests by revealing its full software version number, 

sometimes organizations either do not display the Apache version number or only show the major 

version, likely to conceal the exact software version they are using. The complete version number is 

crucial for mapping each version to its associated vulnerabilities. Applying these restrictions yields 4.9 

million organization-month observations from 150,836 organizations. Creating the sample for the 

prevalence analysis requires combining this refined server usage panel with data on Apache version 

characteristics, such as the number of reported, disclosed, and already fixed vulnerabilities over time. 

Summary statistics of this sample are provided in Table 2. 

5.2. Empirical strategy 

To analyze vulnerability prevalence across organizations, we aggregate the sample at the monthly 

level and utilize line plots to document the extent and distribution of security vulnerabilities in the Apache 

server software used from 2000 to 2018. These plots show the proportions of organizations using Apache 

with reported, disclosed, and already fixed severe security vulnerabilities each month. 

Analyzing the proportion of organizations with reported vulnerabilities is informative because these 

vulnerabilities are known to at least a small group of security experts, and the proportion represents the 

stock of organizations with vulnerable server software. Assessing the proportion with publicly disclosed 

vulnerabilities is critical; malicious parties could exploit this information to target organizations using 

server software with these vulnerabilities, thus highlighting the pool of organizations at risk of attack. 

Lastly, examining the proportion of organizations with vulnerabilities that are already fixed in newer 

versions sheds light on the stock of organizations that are slow to apply software updates, providing 

empirical evidence contributing to the debate on the benefits and costs of mandated vulnerability 

disclosures. 
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5.3. Results 

Figure 1(a) depicts the proportion of organizations using Apache versions with reported severe 

security vulnerabilities over time. This plot is generated by aggregating across organizations the binary 

indicator variable, 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!", which signifies whether severe security vulnerabilities have 

been reported for an organization-month. The figure demonstrates that a significant fraction of 

organizations’ servers operated with these vulnerabilities. Over almost 20 years, the proportion of firms 

operating with these vulnerabilities averaged 68%, reaching nearly 100% between December 2015 and 

June 2017. This peak corresponds with the discovery of a critical security vulnerability (identifier: CVE-

2017-7679) in a module responsible for assigning content metadata to HTTP responses. This finding 

indicates a high prevalence of organizations using Apache versions with known vulnerabilities. 

Figures 1(b) and 1(c) decompose Figure 1(a) into the proportions of organizations with reported but 

undisclosed vulnerabilities and those with reported and disclosed vulnerabilities, respectively. This 

analysis helps assess whether the high prevalence of known vulnerabilities was due to slow disclosures by 

the ASF or organizations continuing to use vulnerable software versions even after disclosures. 

As shown in Figure 1(b), no organizations had reported undisclosed vulnerabilities for most months, 

suggesting that disclosures occurred swiftly after reports within the same month. In some instances, 

disclosures did not occur in the same month as the reports but were still relatively prompt. This 

corresponds to the spikes, or the rapid increase and decrease in the proportion of organizations with 

undisclosed vulnerabilities observed between 2002 and 2010. One exception is from December 2015 to 

June 2017, when a significant proportion of organizations were affected by the reported but undisclosed 

vulnerability CVE-2017-7679. The ASF received this report in November 2015 but did not disclose and 

fix it until June 2017. 

The line plot in Figure 1(c) is generated by aggregating the binary indicator variable, 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!", which signifies whether severe security vulnerabilities have been disclosed for 

the version in use for an organization-month. In contrast to Figure 1(b), Figure 1(c) aligns closely with 
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Figure 1(a), indicating that most organizations operating vulnerable Apache software did so not because 

of delayed disclosures by the ASF but because they continued to use the vulnerable software after 

disclosures were made. The figure shows that a significant fraction of organizations’ servers operated 

with these vulnerabilities throughout the sample period. Over nearly 20 years, the proportion of firms 

operating with these vulnerabilities averaged 60%, peaking at 98% in October 2014. This peak 

corresponds to discovering a critical security vulnerability (identifier: CVE-2004-0885) in a module 

responsible for strong cryptography. The finding suggests a high prevalence of organizations using 

Apache with known and disclosed vulnerabilities. While the exploitability of these vulnerabilities 

depends on the precise configuration of each organization’s operating system, and organizations could 

have applied temporary mitigation methods (e.g., self-developed patches, backports), the high prevalence 

of vulnerabilities suggests that firms are operating outdated and potentially insecure server software. 

Figures 1(d) and 1(e) further decompose Figure 1(c) into the proportions of organizations with 

disclosed but unfixed vulnerabilities and those with disclosed and already fixed vulnerabilities, 

respectively. This analysis helps to assess whether the high prevalence of disclosed vulnerabilities was 

due to the ASF not offering fixes or because organizations continued to use vulnerable software even after 

newer versions with fixes were available. The former would suggest security mismanagement on the part 

of the ASF, which would call for policies for better governance of software developers. The latter would 

suggest security mismanagement by the organizations themselves, which would call for policies that 

promote more effective user updating behaviors. 

Although a number of organizations dealt with disclosed vulnerabilities without fixes between 2003 

and 2005, as shown in Figure 1(d), almost no organization faced disclosed but unfixed vulnerabilities for 

most months from 2006 to the end of the sample period. This indicates that the ASF has become more 

effective in managing disclosures and releases of new versions with fixes as it has matured. In contrast to 

Figure 1(d), Figure 1(e) is closely aligned with Figure 1(c). This shows that most organizations operating 

vulnerable Apache software did so not because the ASF delayed releases of new versions with fixes but 

because they continued to use the vulnerable software after fixes were made available.  
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Figure 2 further dissects Figure 1(e), displaying the fraction of organizations using Apache versions 

with one or more disclosed and fixed severe security vulnerabilities. The blue line plot in Figure 2 is 

identical to the line plot in Figure 1(e), generated by aggregating the binary indicator variable 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!", This signifies whether the organization's Apache version that month had severe 

security vulnerabilities already fixed in newer versions. Alarmingly, 57% of organizations in the sample 

used Apache versions with disclosed severe security vulnerabilities already fixed in newer versions. Yet, 

these organizations did not adopt the fixed versions. The proportion of these organizations almost never 

fell below 20% throughout the sample period.  

Additionally, Figure 2 shows that many organizations operated Apache versions with multiple severe 

security vulnerabilities already fixed in newer versions. The number of such vulnerabilities is captured by 

the count variable, 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!". On average, organizations utilized Apache versions with 

two severe vulnerabilities that were already fixed in newer versions; a notable proportion operated with 

six or more. This highlights organizations’ inaction. Apache fixed the software, but the companies did not 

make the local updates necessary to complete the fix. 

Figure 2 also plots the release dates of fixed versions, represented by vertical dotted lines. For 

example, in July 2006, the ASF released Apache 1.3.37, Apache 2.0.59, and Apache 2.2.3. These releases 

fixed a severe vulnerability (identifier: CVE-2006-3747) that allows remote attackers to cause a denial-of-

service attack. The red oval in Figure 2 highlights the update window following the July 2006 release. A 

closer examination of that update window reveals that many organizations took months or even years to 

update to those releases. The fraction of organizations using problematic versions of Apache peaked at 

92% following the release, but the rate declined by only 1.7% per month over the next three years. By 

mid-2009, over 30% of organizations were still operating vulnerable versions of the Apache software. 

5.4. Policy implications 

The empirical results on the prevalence of Apache vulnerabilities offer abundant policy implications. 

The analysis reveals that the ASF has generally been prompt in disclosing and addressing vulnerabilities 
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upon their discovery. Instances where severe vulnerabilities remained undisclosed for more than two 

months post-reporting are scarce in the dataset. Additionally, while there was a period between 2003 and 

2005 during which the ASF took longer to fix disclosed vulnerabilities, there has been a marked 

improvement in its security practices since 2006, with such instances becoming exceedingly rare. Their 

actions align with Arora, Caulkins, and Telang's (2006) recommendation to disclose vulnerabilities 

quickly to accelerate the development of patches and updates. 

Conversely, the results highlight a significant risk linked to quick and/or compulsory disclosure 

stemming from users’ delayed actions in updating to available fixed versions. Although swift disclosure 

may motivate software developers to produce fixes more quickly, it also risks leaving many users who are 

slow to respond susceptible to exploitation by malicious entities. 

6. Determinants of Fixing Vulnerabilities 

6.1. Sample Construction 

To study the determinants of organizational differences in vulnerability prevalence, we combined the 

analysis sample for prevalence with various organizational and website characteristics that serve as 

explanatory variables. Table 2 shows summary statistics for the merged sample used in this section for 

analyzing the determinants of vulnerabilities in firms’ server software. 

Key outcome variables are 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" and 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" , which capture the 

extent and number of severe vulnerabilities in the Apache versions organizations use. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 

is the binary indicator variable that indicates whether an organization, in the given month, used an Apache 

version that had severe security vulnerabilities that were already fixed in newer versions. 

𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" is a count variable, tallying the number of such severe security vulnerabilities in 

the Apache version used by the organization in the given month. These variables are the best at capturing 

differences in organizations’ actions or inactions compared to the number of reported or disclosed 

vulnerabilities, which are also influenced by the actions of the ASF. 
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A range of explanatory variables captures the cost of patching, as motivated by August and Tunca 

(2006). The binary indicator variable 𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" signifies whether the observation represents the first 

instance of the organization’s website using Apache, as captured by the IA. Unlike incumbent users of 

server software, new users of Apache are not constrained by previous technical investments and should, 

therefore, face lower costs when adopting the latest, vulnerability-free software versions. The variables 

𝑃𝐶𝑠!, 𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡!, and 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! reflect the number of computers, the IT budget, and the 

software-specific budget an organization had in 2017, retrieved from the Harte Hanks database. These 

variables proxy for the overall scale and complexity of IT operations within an organization. Specifically 

for the technical complexity of the website that the server software hosts, we utilize HTTP Archive’s 

website technology data to construct variables 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! and 𝑡𝑒𝑐ℎ𝑠! to denote the number of 

technology categories (e.g., JavaScript Frameworks, Marketing Automation) and the individual 

technologies (e.g., jQuery, Google Analytics) embedded within the website over the time we observe this 

data. The variables 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! and 𝑐𝑙𝑜𝑢𝑑!" indicate whether the organization has outsourced its IT 

operations and whether the server software was likely hosted on a cloud provider, AWS, Azure, or 

Google Cloud.10 Outsourcing and cloud hosting reduce an organization’s day-to-day costs of monitoring 

and securing software, as many of the maintenance tasks are delegated to third parties. 

A few variables reflect both the cost of updating and the value at risk. One such variable is 

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐!, a binary indicator variable that captures whether a website experienced high traffic based 

on Alexa rankings, defined as being in the top 100,000 most visited websites at any point during the time 

we observe this data. Another is 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!, a binary indicator variable showing whether a website 

has embedded monetization technologies for e-commerce, marketing automation, and payment 

 
10 We observe outsourcing status for only a few organizations between 2005 and 2009. We define 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔!=1 
if the organization has outsourced during 2005—2009 so the variable only has the organization subscript 𝑖. We also 
define a binary indicator variable 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔𝑀𝑖𝑠𝑠𝑖𝑛𝑔! to indicate whether outsourcing information is missing for 
an organization. This variable will help us to keep observations with missing outsourcing information in regressions, 
allowing us to preserve a relatively large sample size and statistical power. 
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processing.11 A high-traffic website or an e-commerce site is valuable, but updating is also more 

expensive due to the potential for interrupted services. 

Additional variables reflect the value at risk from not updating, which was also motivated by August 

and Tunca (2006). These include binary indicator variables 𝑓𝑖𝑛𝑎𝑛𝑐𝑒!, ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒!, and 𝑔𝑜𝑣𝑡! for 

organizations in the finance or healthcare sectors or public administration. These sectors are likely to 

process highly sensitive personal data, representing an exceptionally high value at risk. These variables 

also include 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" and 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!", which capture the number of data 

breaches in the same state or industry as the organization under observation in a given month. The 

variables 𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" and 𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" capture the total number of 

personal records reported to have been compromised in those breaches. While data breaches do not 

directly increase the value at risk for organizations in the same state or industry, they could heighten the 

awareness of the value at risk. The estimation also includes standard organizational characteristics such as 

employment, revenue, and whether the organization was publicly listed. For publicly listed firms, 

additional variables are included, such as the firm’s total assets and income each year.  

6.2. Empirical Strategy 

A linear probability model can estimate how different organizational and website characteristics 

affect whether the organization used an Apache version with severe security vulnerabilities already fixed. 

The endogenous variable is 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!". The regression specification is given by: 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" = 𝛽# + 𝛽$𝑋$,!" +⋯+ 𝛽&𝑋&,!" + 𝛿" + 𝜖!", (1) 

where 𝑋$,!" , … , 𝑋&,!" represents the explanatory variables, including organizational and website 

characteristics, and 𝛿" denotes month-fixed effects. The inclusion of month-fixed effects is motivated by 

the patterns observed in Figure 2, which show that the months in which fixes were released resulted in 

significant shifts in the prevalence of fixed severe vulnerabilities among organizations. 

 
11 This variable is defined as 1 if the website has embedded any of the technology categories “analytics,” “tag 
managers,” “advertising networks,” “marketing automation,” “e-commerce,” and “payment processors” during 
2016—2018. 
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A Poisson regression model can estimate how different organizational and website characteristics 

influence the number of fixed severe security vulnerabilities in the Apache version used by organizations. 

The endogenous variable is 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!". Under this model, 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" is 

presumed to follow a Poisson distribution, with the parameter 𝜆!" = 𝐸(𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!") being a 

log-linear function of the explanatory variables 𝑋$,!" , … , 𝑋&,!": 

log	(𝐸(𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!")) = 𝛽# + 𝛽$𝑋$,!" +⋯+ 𝛽&𝑋&,!" + 𝛿" + 𝜖!". (2) 

Like the linear probability model,  𝑋$,!" , … , 𝑋&,!" includes organizational and website characteristics and 

𝛿" denotes month-fixed effects.12 

6.3. Results 

Table 4 presents regression results for the linear probability model and the Poisson model across 

different combinations of explanatory variables. Columns (1) and (4) show the regression results for the 

linear probability and Poisson models, respectively when only the most well-populated explanatory 

variables are included. This approach enables the preservation of a large sample of organization months. 

Columns (2) and (5) introduce less well-populated explanatory variables. Lastly, Columns (3) and (6) 

show the results from adding organization-fixed effects to both models. Although the regressions utilize 

two distinct outcome variables, and sample sizes for each specification differ significantly, the results are 

remarkably consistent across the various specifications. Appendix Table A4 includes variables from 

Compustat about public firms, which effectively restricts the sample to these firms. The results from 

public firms are very similar to those from the full sample. 

Variables capturing the cost of updating are good predictors of both the presence of fixed severe 

vulnerabilities and the number of fixed severe vulnerabilities. Being a new user is associated with a 

decrease of 3.3 to 4.7 percentage points in the probability of having any fixed severe vulnerabilities, and 

 
12 While the outcome variable 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" shows evidence of overdispersion (it has a mean of 2.012 
and a standard deviation of 2.312 as shown in Table 3), a fixed effects Poisson model is robust to overdispersion and 
is preferred over a fixed effects negative binomial model due to its robustness to both over- and underdispersion, 
heterogeneity in the variance-mean relationship across observations, violations of conditional independence, and 
serial correlation, which the fixed effects negative binomial model is not robust to (Wooldridge 1999). 
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with at least a 1 − exp(−0.124) = 11.7% reduction in the number of fixed severe vulnerabilities. Cloud-

hosting is linked to a 10.9 to 19.9 percentage point decrease in the probability of having fixed severe 

vulnerabilities and at least a	1 − exp(−0.414) = 33.9% decrease in the number of fixed severe 

vulnerabilities. Both variables are significant at the 1% level across all specifications. While other 

variables that capture the cost of updating do not provide estimates as significant or consistent across 

different specifications, the direction of the estimates generally supports the hypothesis that organizations 

with higher costs of updating tend to have a higher prevalence of vulnerabilities. Organizations with more 

PCs are more likely to have severe vulnerabilities already fixed in newer versions, and a greater number 

of them, though the effect is not economically significant. Similarly, organizations that have not 

outsourced their IT operations are more likely to have such vulnerabilities and more of them, compared to 

those that have outsourced or about which we lack information. Evidence regarding website technical 

complexity is inconclusive, as estimates for 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! and log	(𝑡𝑒𝑐ℎ𝑠! + 1) are close to zero for 

the full sample and do not have a consistent direction for the public firms. 

For variables that capture both the high cost of updating and the high value at risk, the estimates 

suggest that organizations are more concerned about the cost of updating than the value at risk. The 

estimates for ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! are positive and highly significant across all specifications. These estimates 

indicate that websites with high traffic are 2.6 to 5.0 percentage points more likely to use Apache versions 

with severe vulnerabilities that are already fixed in newer versions and exp(0.036) − 1 = 3.7% more of 

those vulnerabilities. Although the estimates for 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! are less significant, the positive direction 

of these estimates is consistent with the hypothesis that the cost considerations of updating and making 

software secure outweigh the considerations regarding value at risk. 

The results also suggest that the value at risk does not have a strong association with the prevalence 

of fixed severe vulnerabilities. Although the finance, healthcare, and public administration sectors are all 

likely to handle sensitive personal data, firms in these areas do not consistently display superior 

vulnerability prevalence. Data breach disclosures within the same state or industry have an economically 
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insignificant impact with inconsistent directionality. We have considered a range of organizational 

characteristics, such as revenue and whether the firm is publicly listed. Appendix Table A4 includes 

various characteristics of publicly listed firms, such as income and cash flow. However, none of these 

variables appear to be significant. The only notable finding is that larger organizations are more likely to 

use Apache versions with severe vulnerabilities already fixed in newer versions and to have a greater 

number of them. 

The estimates suggest that a significant amount of unobserved organizational factors also influenced 

vulnerability prevalence. While the cost of updating is a strong predictor of prevalence, the magnitude of 

each individual estimate is small compared to the overall prevalence of vulnerabilities. Moreover, the 

explained variance in the outcome variable 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!", as indicated by the R-squared value, is 

only moderate. In Column (3) of Table 4, the inclusion of organization-fixed effects substantially 

increased the R-squared value. These results suggest that unobserved variations between organizations are 

likely essential drivers of differences in prevalence. Given the effectiveness of organization-fixed effects 

in improving model fit, these unobserved variations likely stem from persistent organizational differences, 

such as routines or management culture regarding cybersecurity. 

6.4. Policy implications 

These results carry substantial policy implications. First, they relate to theoretical models concerning 

user incentives for patching and optimal patch management, such as those by August and Tunca (2006) 

and Cavusoglu, Cavusoglu, and Zhang (2008). The cost of patching and the value at risk are crucial 

elements of these models that affect the optimality of different incentive schemes. The findings suggest 

that organizations with lower patching costs are more likely to patch. At the same time, those with a 

higher value at risk do not necessarily exhibit a greater likelihood of patching.  

The results could assist policymakers in developing targeted policies. The findings imply that 

policies aimed at increasing the value at risk, such as a usage tax, may not be the most effective. 

Similarly, data breach disclosures or marketing campaigns designed to raise awareness of the value at risk 

from cyberattacks are unlikely to be effective. In contrast, policies that reduce the cost of patching for 
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users, such as cost-sharing, patching rebates, and providing IT training, may prove more effective. 

Among these policies, workshops or subsidies that help organizations migrate their software services to 

third-party professionally managed services and the cloud could reduce the prevalence of vulnerabilities. 

The organizational effect is also an important consideration for policymakers, as organizations may 

exhibit persistence in their security management practices. This has implications for the relative 

effectiveness of policies aimed at incentivizing the installation of updates through cost and benefit 

mechanisms versus those targeting changes in the long-run organizational routines and managerial 

culture. Similar to the ideas of Cavusoglu, Cavusoglu, and Zhang (2008) that update releases should be 

aligned with firm updating cycles; our results regarding persistence in firm updating practices suggest that 

policy interventions that overlook organizational-level factors could have limited effectiveness.  

7. Responsiveness 

7.1. Sample Construction 

Section 6 does not provide insights into the determinants of how quickly organizations respond to 

new updates post-release. The speed of updating deserves its own investigation. It could uncover 

additional factors that enable organizations to address severe vulnerabilities with software updates more 

promptly at certain times than at others—for example, the characteristics of the updates themselves. The 

approach involves analyzing the effects of characteristics of updates and characteristics of an organization 

and its website on the time taken to adopt fixes. To construct the sample, we identify the relevant time 

periods following the release of each critical update for the software versions used by organizations. 

Figure 3 provides a visual explanation of the construction of the responsiveness sample. Panel (a) 

displays observations from the determinants of vulnerabilities sample for the firm Adobe. Each 

observation details the organization’s identifier 𝑖 (“adobe.com”), the month of IA capture 𝑡, and the 

version of Apache. The sample also includes other organizational and website characteristics not 

displayed in Panel (a). The dataset records Adobe’s use of Apache from March 2001 to December 2002. 

These observations will be utilized to construct observations in the responsiveness sample pertaining to 
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Adobe. It should be noted that, due to the irregular capture frequency of the IA, there are gaps in our 

observations, such as in February 2002 and April 2002 for Adobe. 

It is possible to know whenever a new version that fixes vulnerabilities in a particular Apache 

version becomes available based on the data on Apache security vulnerabilities. For example, between 

March 2001 and December 2002, two releases addressed the severe vulnerabilities in the Apache versions 

Adobe used. One of them was the release of Apache 1.3.24 in March 2002, which fixed a severe 

vulnerability (identifier: CVE-2002-0061) in the version in use, Apache 1.3.19, that allowed remote 

attackers to execute arbitrary commands. Panel (a) shows that by July 2002, Adobe.com had been updated 

to a version above 1.3.24, which fixed the vulnerability.  

Using the relevant observations from Panel (a) for this updating event, as shown in the red box in 

Panel (a), we can construct one observation in the responsiveness sample. This observation is shown in 

the red box in Panel (b). The 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' variable represents the number of months it took the 

organization to adopt the fix, where the 𝑟 subscript indexes the release (version 1.3.24 in March 2002). 

The 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' variable in this case equals 4. The 𝑓𝑖𝑥𝑒𝑑!' variable is a binary indicator, where it 

equals 1 if the organization adopts the fix and equals 0 if it does not adopt the fix by the final recorded 

observation (i.e., this updating cycle is right-censored). 𝑓𝑖𝑥𝑒𝑑!' in this case is 1. The variable 

𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' represents the number of severe vulnerabilities that the new update could fix for the 

version in use, which equals 1 in this case.  

Another release that addressed severe vulnerabilities for Adobe was the release of Apache 1.3.27 in 

October 2002, which fixed two severe vulnerabilities (identifiers: CVE-2002-0839 and CVE-2002-0843) 

in the version Apache 1.3.26. We observed Adobe’s Apache usage up to December 2002, and no updates 

occurred until then, as shown in the green box in Panel (a). This allows us to construct an observation in 

Panel (b), where 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' is recorded as 2, and 𝑓𝑖𝑥𝑒𝑑!' is set to 0 to reflect that the updating cycle is 

right-censored. The number of severe vulnerabilities fixed in that release, 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!', is 2. 
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Another point to consider in the sample construction is handling gaps in IA captures. Although 

Figure 3 indicates gaps in IA captures for Adobe in February 2002 and April 2002, these did not affect the 

sample construction. We were able to deduce the time to fix precisely. Such precision is not attainable 

when significant gaps in an updating cycle occur. An updating cycle is observed to start with the release 

that fixed severe vulnerabilities in the version in use and is deemed to end with the first observed use of a 

version above that release. Suppose significant gaps are present within this cycle. In that case, it is 

conceivable that the organization might have been using the updated version for a substantial period 

before it was recorded in the data. Hence, only updating cycles for which there are IA captures at least 

once every two months on average are used to construct observations for the responsiveness sample. 

We include additional variables. These capture the characteristics of the updates, as well as the 

organization and website characteristics. Table 5 presents the summary statistics for this sample. 

Numerous variables represent the characteristics of the updates for each release that fixed severe 

vulnerabilities. The variable 𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' represents the number of non-severe vulnerabilities 

release 𝑟	fixed in organization 𝑖’s version in use at the time of the release. Meanwhile, 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!' represents the cumulative number of feature changes between the version 

organization 𝑖 used and release 𝑟. Fixes for minor vulnerabilities and feature changes can be valuable, but 

they can also add complexity and cost to software updates.  

The variable 𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛!' is a binary indicator that equals one if the version in use and 

release 𝑟	belong to the same major version (e.g., the version in use is 1.3.19, and the fix is released in 

1.3.24) and equals 0 otherwise (e.g., the version in use is 1.3.19 and the fix is released in 2.0.37). Updates 

within the same major version represent small incremental changes that are less costly to install.  

The binary indicator variables ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡!' and ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦!' indicate that the update 

fixed vulnerabilities with high impact and high exploitability, respectively. High-impact vulnerabilities, 

which scored 10 out of 10 in impact according to NIST’s scoring rubric, could result in total disclosure of 

information, a total compromise of system integrity that allows attackers to modify any files, and a 
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complete shutdown of the system. High exploitability vulnerabilities, which scored 10 out of 10 in 

exploitability by the same rubric, would allow attackers to attack over the network without authentication 

requirements, and the attack has low complexity once an attacker has gained access to the target system.  

The variable 𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐!' is a binary indicator that indicates that at least one of the severe 

vulnerabilities fixed by the release is not specific to a particular operating system, making the 

vulnerability more general. 

The variable 𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' represents the time the organization took to update to the preceding 

release that addressed severe vulnerabilities. It investigates the persistence of organizations in their 

vulnerability patching practices. If organizations were not persistent, those slow to update in the previous 

updating cycle should aim to rapidly update in the current cycle to compensate. Conversely, suppose 

organizations are burdened with consistent organizational costs, such as a poorly organized IT 

department. Then, they will exhibit delays in the current cycle if they were slow previously. 

The responsiveness sample also includes the range of organization and website characteristics, for 

example, 𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" and 𝑃𝐶𝑠!. Whenever these variables carry a time subscript, the value of the variable 

on the release date is used to fill that variable in the responsiveness sample.  

7.2. Empirical Strategy 

Because the outcome of interest is a time-to-event variable—the amount of time from the release 

until the organization adopts the release—survival models can estimate what predicts faster or slower 

updating. We first estimate the standard Cox proportional hazards regression model, specified as follows: 

ℎ!'(𝑡) = ℎ#(𝑡)𝑒𝑥 𝑝f𝑏$𝑋$,!' + 𝑏(𝑋(,!' +⋯+ 𝑏)𝑋),!'g, (3) 

where ℎ!'(𝑡) is the hazard function, representing the expected number of updates to the fixed version 

given that the vulnerable version has survived for 𝑡 months. ℎ#(𝑡) is the baseline hazard and represents 

the hazard when all the explanatory variables 𝑋$,!' , … , 𝑋),!' are equal to zero. If some explanatory 

variables carry a time subscript 𝑡 or 𝑦 that varies within an updating cycle, the value of the variable on the 

release date is used in the regressions. 
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The model described above does not account for unobserved differences in the organizations’ 

security management practices, which could lead to reverse causality issues. Specifically, the model in 

Equation (3) assumes the baseline hazard. ℎ#(𝑡) is the same for all organizations. However, organizations 

that are persistently slow to update for unobserved reasons are more likely to use older versions of 

Apache, which have more severe security vulnerabilities that need fixing. If we assume a uniform 

baseline hazard across all organizations and estimate a Cox model, the estimate for 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' would 

likely be biased downward. We might incorrectly conclude that a release addressing a greater number of 

severe security vulnerabilities would be associated with a longer time to adopt the release. 

To control for unobservable differences in organizations’ security management practices, the 

preferred specification is a stratified Cox model. Each organization has a different baseline hazard: 

ℎ!'(𝑡) = ℎ#!(𝑡)𝑒𝑥𝑝	f𝑏$𝑋$,!' + 𝑏(𝑋(,!' +⋯+ 𝑏)𝑋),!'g, (4) 

where the 𝑖 subscript in ℎ#!(𝑡) denotes stratum for organization 𝑖. Under this model, the effect of a 

variable is identified by the changes to that variable within an organization across different releases.  

The estimated effect of update characteristics on the time-to-fix from Equation (5) is causal because 

the reporting, disclosures, and release of fixes for severe security vulnerabilities and the characteristics of 

each update released are plausibly exogenous to an organization’s IT staff. The crucial assumption in this 

context is intuitive. Most web developers and IT professionals are not directly involved in developing 

Apache server software or in its vulnerability handling process. The influence of any single organization 

(aside from the ASF) is negligible compared to the total global interactions. To ensure that individual 

organizations’ actions do not disproportionately affect vulnerability handling, we examined the data on 

who was credited with reporting each vulnerability to the ASF. Aside from the ASF Security Team staff, 

there is almost no overlap in the names and organizational affiliations of the reporters. 

7.3. Results 

Estimation results are presented in Table 5. They provide evidence that the stratified Cox model is 

preferable. Column (1) displays the standard Cox regression results, using only update characteristics as 
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explanatory variables. As expected, the estimate for 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' is biased downward due to 

unaccounted-for organizational effects. Column (2) incorporates more comprehensive organization and 

website characteristics, and Column (3) includes additional, less populated organizational and website 

characteristics. As these controls are added, the coefficient becomes increasingly positive. This suggests 

that accounting for organizational effects is crucial for mitigating reverse causality issues and ensuring 

correct inferences. Column (4) presents the estimates from the stratified Cox model, stratified at the 

organization level, using only release characteristics as explanatory variables. Column (5) presents the 

stratified Cox model with additional controls for time-varying organization characteristics. Now, the 

estimates for 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' 	are large, positive, and highly significant. This suggests that organizations 

respond more quickly to an increase in the number of severe vulnerabilities a release fixes.  

Another piece of evidence supporting the effectiveness of the stratified Cox model in controlling for 

unobserved organizational effects comes from the estimates of the variable 𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!'. This 

variable captures the persistence of organizations in their behavior between adjacent updating cycles. The 

estimates for this variable are large, negative, and highly significant in the standard Cox models. They 

suggest that a one-month increase in the time to fix in the previous updating cycle for an organization 

would be associated with at least a 1 − 𝑒𝑥𝑝(−0.018) = 1.8%	decrease in the expected hazard of 

updating in the current cycle. The estimates become economically negligible in the stratified Cox models. 

Based on the preferred specification, the stratified Cox models, organizations have varying levels of 

responsiveness to different characteristics of updates. The estimates show that organizations are 

responsive to fixing severe vulnerabilities that enhance the security of their software. An additional severe 

vulnerability being fixed in a new release would result in a 𝑒𝑥𝑝(0.073) − 1 = 7.6%	to 𝑒𝑥𝑝(0.170) −

1 = 18.5% increase in the expected hazard of updating to that release.  

Organizations are averse to characteristics of updates that increase the complexity of updating, even 

when those characteristics offer benefits, such as minor bug fixes and feature improvements. An 

additional non-severe vulnerability being fixed in the new release would result in at least a 1 −
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𝑒𝑥𝑝(−0.066) = 6.4%	decrease in the expected hazard of updating to the release. Furthermore, a 10% 

increase in the number of feature changes in the release, relative to the version in use, would result in at 

least a 1 − 𝑒𝑥𝑝 j− #.#+,
$##

∗ 10l = 0.7% decrease in the expected hazard of updating. This contrast 

suggests that organizations perceive the benefit of updating to fix severe vulnerabilities to outweigh the 

cost, which is not the case for non-severe bugs and feature improvements. 

Organizations are more responsive to new releases that consist of small incremental changes, in 

contrast to major upgrades in performance and features. When the release is a minor new version within 

the same major version as the version in use, organizations exhibit at least a 𝑒𝑥𝑝(1.150) − 1 = 215.8% 

higher expected hazard of updating compared to releases that are part of a different major version. 

Organizations are more responsive to highly exploitable severe vulnerabilities than those that address 

highly impactful vulnerabilities. While the estimates for high-impact vulnerabilities are not consistently 

significant, a release that addresses highly exploitable severe vulnerabilities is associated with at least a 

𝑒𝑥𝑝(0.233) − 1 = 26.2% increase in the expected hazard of updating to that release. 

7.4. Policy implications 

The attributes of updates influence their adoption (F. Li et al. 2019). Our  results offer important 

empirical evidence for the policy debate on designing effective vulnerability disclosure policies. These 

estimates demonstrate that full disclosure is unlikely to be optimal. While organizations respond to 

releases that announce fixes for severe vulnerabilities, the evidence suggests they avoid releases 

disclosing fixes for non-severe ones due to the greater costs and complexity of adoption, which outweigh 

the perceived benefits. Thus, a robust vulnerability disclosure policy that aims to minimize vulnerability 

exposure, maximize patching behavior, and enhance societal welfare could consider disclosing fixes for 

severe vulnerabilities but not minor ones. 

Moreover, the empirical evidence suggests that organizations are very cost-sensitive when making 

vulnerability patching decisions. Announcements of feature improvements could increase the perceived 
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costs and complexity of installation. Software developers should reconsider how much information about 

feature improvements to disclose to avoid discouraging patching behavior. 

Additionally, developers should consider releasing small incremental updates or standalone patches 

for highly severe vulnerabilities to encourage patching rather than bundling the patch with numerous new 

features in a major release, which could serve as a deterrent. Furthermore, developers should emphasize 

exploitability when disclosing fixes for severe vulnerabilities in new releases. This is likely more 

effective than simply discussing the potential impact if the vulnerability were to be exploited. 

Our findings also highlight the significant role of persistent, unobserved organizational effects in 

shaping organizations’ responsiveness to adopting fixes. This suggests that even optimally crafted 

disclosure policies may achieve limited success for the laggards unless there is a fundamental 

transformation in organizational routines and culture regarding cybersecurity. 

8. Conclusion and Discussion 

This study examined security vulnerabilities in open-source server software used by over 150,000 

organizations in the United States between 2000 and 2018. This is the largest data set assembled on 

security vulnerabilities and updates. The study sought to understand previously underexplored research 

questions at the heart of assessing which cybersecurity policies will likely be effective. Specifically, we 

examined how prevalent severe vulnerabilities are in server software, what determines the variance in the 

installation distribution, and how fast software users respond to the availability of secure versions.  

The empirical analysis revealed four critical findings. First, the study finds widespread usage of 

server software with known vulnerabilities. While the exploitability of these vulnerabilities depends on 

various factors, the high prevalence suggests that there may be many opportunities for malicious actors to 

exploit organizations’ web servers. Second, the prevalence of vulnerabilities in the software used to host 

companies’ websites is associated more with factors related to the cost of updating than factors related to 

the value of security. Third, observables cannot easily explain the large variation in the prevalence of 

vulnerabilities in company server software. Instead, persistent, unobservable aspects of organizations, 

such as organizational routines, explain much of the variation in the presence of vulnerabilities. Finally, 
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firms are responsive to updates with security fixes, but they are slower to install multifaceted and 

complex updates.  

These findings inform previous theoretical work on cybersecurity policy. First, scholars and 

policymakers have contemplated mandating the disclosure of software vulnerabilities to instigate faster 

releases of software updates patching vulnerabilities (Arora, Telang, and Xu 2008). Our data revealed, 

however, that organizations are slow and unthorough when installing updates. This finding gives reason 

to be cautious about such a policy. Second, policymakers have considered either providing patching 

rebates to defray the cost of installing updates or taxing software users to dissuade low-value firms from 

using software in insecure ways (August and Tunca 2006). Our finding that the presence of vulnerabilities 

in server software is associated with high costs of updating implies that software update rebates may be 

more effective at increasing cybersecurity practices than policies aimed at increasing the value of 

updating or highlighting the risk of vulnerability. In addition, organizations can take actions that reduce 

the cost of installing updates, such as hosting their website on a cloud-based platform that assists with 

installing updates and decreasing the technological complexity of their website. Furthermore, the finding 

that much of the variation in the presence of vulnerabilities is explained by persistent unobservable 

attributes of firms implies that policymakers and managers may wish to focus on organizational routines 

and culture to improve cybersecurity. For example, managers should consider if a routine that includes 

updating at regular intervals is beneficial for their organization. Finally, a long-running theme in 

cybersecurity literature questions the amount of information software vendors should release about 

vulnerabilities in their software (Mitra and Ransbotham 2015). The results of the hazard model analysis 

reinforce that software vendors can also design the release of software updates in ways that are more 

likely to have those updates adopted. Specifically, when patches fixing severe vulnerabilities are 

packaged in an update alone, they are more likely to be installed in a timely manner than if those updates 

contain feature updates or minor bug fixes. 

This study does have limitations. First, it only examines Apache web servers. While open-source 

server software operates on most servers today (Greenstein and Nagle 2014), installing updates on 
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proprietary server software, especially from software vendors that automatically send updates to users, 

may be different. Whereas extensive and detailed data were available for this study because Apache 

server software is open source, proprietary software vendors are less transparent about their products and 

users. Future research on the usage of proprietary software would enable a more complete picture of 

software user behavior in general.  

Second, there are many challenges matching variance in server software decisions at organizations 

with variance in management practices at those organizations. The observed routines regarding software 

updates may reflect broader managerial routines or IT investments. While we have attempted to match the 

data with information in the World Management Survey, the overlap in samples provides limited 

statistical power for analysis, and the select sample of matching firms constrains the external validity of 

any findings. Future researchers should seek to find ways to expand on the insights by attempting to 

understand how managerial practices more broadly influence IT and cybersecurity investments. 

Third, we cannot definitively say if firms are making rational, calculated decisions or if the firms’ 

decisions are the reflection of inattention. For example, a firm that forgoes installing an available software 

update may be aware that their firm is unlikely to be targeted by malicious actors or knows that the 

idiosyncratic software configuration on their server mitigates the vulnerabilities fixed in that update. 

While we include a measure of the traffic to a firm’s website in our regressions, as this is likely to be 

correlated with attention from malicious actors, we cannot observe the same information that firm 

managers possess. Thus, we cannot judge their decisions. Instead, our data highlights that a large share of 

organizations operate server software with vulnerabilities that could be exploited, which policymakers 

may find to be socially less than ideal. Future researchers could collect additional data to illuminate this 

topic further. 

This study sets the stage for future research on a variety of cybersecurity-related topics. First, more 

research can be done on factors that instigate changes in cybersecurity practices. For example, future 

research should examine how executive leadership changes, labor market changes for IT professionals, 

and business cycles impact firms’ cybersecurity postures. Second, more research should be done on the 
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effect of cybersecurity service vendors on vulnerabilities. While this seems like a rich area for research, 

additional data collection on the timing and usage of these services will be required. Future research 

should better understand the interaction of firm strategy, the competitiveness of firms’ markets, and 

cybersecurity investment decisions. Finally, additional data on the cybersecurity threats faced by firms, 

including the probability of an attack and the damages from actual incidents, could provide further insight 

into the determinants of updating decisions and the rationality of organizations regarding these decisions. 
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Tables and Figures 

Table 1 Summary of Data Sources 
 
 Data Variables Coverage Source 
Key data source 
(i) Server 

software usage 
panel of U.S. 
organizations 

Server software name, version 
number, IP address for the homepages 
of 200,000+ U.S. organizations with 
50 or more employees  
 

Jan 1, 2000--August 1, 
2018; irregular capture 
frequency; 17+ million 
observations 
 

IA 
 

Apache version characteristics 
(ii) Apache 

security 
vulnerabilities 

Each vulnerability’s reporting date, 
version(s) affected, disclosure date, 

158 vulnerabilities reported 
before or on August 1, 2018 

ASF 
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fix date, and version, and (when 
available) the reporting entity 
 

(iii) Severity of 
Apache 
security 
vulnerabilities 

Each vulnerability’s severity rating 
(high, medium, or low), and 
breakdown scores including impact 
and exploitability 
 

28 vulnerabilities rated 
high, 123 rated medium, 
and 7 rated low 

NIST  

(iv) Apache version 
release dates 
 

Each Apache version’s release date  115 releases between 2000 
and 2018 

Authors’ 
compilation 

(v) Apache version 
feature 
improvements 
 

Each Apache version’s new and 
improved features from Apache 
change logs 
  

 ASF 

Organization characteristics 
(vi) Basic 

organization 
characteristics 

State, industry (NAICS), the 
estimated number of employees and 
estimated revenue 

Cross-sectional snapshot on 
August 28, 2018 
 
 

Mint Global 
by Bureau 
van Dijk 

(vii) 
 

Public firm 
characteristics  

Total assets, capital expenditure, 
depreciation and amortization, 
number of employees, cash flow, and 
net income 
 

Yearly panel between 2000 
and 2018 

Compustat 

(viii) Organization’s 
IT operations 

Number of personal computers, 
number of IT staff, IT budget, and 
software budget 
 

Cross-sectional snapshot 
for the year 2017 

Harte Hanks 

(iv) Organization’s 
IT outsourcing 

Whether the organization outsourced 
its IT operations during 2005-09  

IT outsourcing variable 
during 2005-09   
  

Harte Hanks 

(x) Data breach 
disclosures 

Disclosing organization, disclosure 
date, state, disclosing organization 
industry, and (when available) 
number of affected records  
 

2,366 data breaches 
disclosed 2005-18 

Privacy 
Rights 
Clearing 
house’s 
Data Breach 
Chronology 

Website Characteristics 
(xi) Website traffic Alexa’s ranking of top one million 

websites by traffic 
Yearly between 2010 and 
2018 

Alexa 

     
     
(xii) Cloud-hosting 

of website 
Whether an organization’s server 
software used an IP address 
associated with AWS, Microsoft 
Azure, or Google Cloud 
 

IP addresses associated 
with AWS (1/25/20), Azure 
(8/13/23), and Google 
(8/14/23).  
 

Amazon, 
Microsoft, 
and Google 

(xiii) 
 

Website’s 
technology use 
 

Website’s technology use in 47 
technology categories, including 

Data captured between 
2016 and 2018; a website 
used a particular 

HTTP 
Archive 
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analytics, e-commerce, and web 
frameworks 

technology if we observe 
the usage during 2016—18  

 
 

Table 2 Summary Statistics of the Analysis Sample for Prevalence 
  

Count Mean STD Min 25% 50% 75% Max 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!" 4861871 0.679 0.467 0 0 1 1 1 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!" 4861871 0.599 0.490 0 0 1 1 1 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 4861871 0.571 0.495 0 0 1 1 1 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!" 4861871 2.362 2.314 0 0 2 4 12 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!" 4861871 2.177 2.366 0 0 1 4 12 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 4861871 2.012 2.312 0 0 1 4 12 

Notes: The 𝑖 subscript indexes organizations. The 𝑡 subscript indexes months. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!", 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!", 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" are binary indicator variables, each indicating whether there 
are severe security vulnerabilities that have been reported, disclosed, or fixed for the Apache version 
observed for the organization-month. 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!", 𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!", 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" are count variables, each counting the number of severe security vulnerabilities 
reported, disclosed, or fixed for the Apache version observed for the organization-month. Appendix Table 
A1 shows the correlation between the variables. 
 
 

Table 3 Summary Statistics of the Analysis Sample for Determinants of Vulnerabilities 
  

Count Mean STD Min 50% Max 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 4861871 0.571 0.495 0 1 1 
𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 4861871 2.012 2.312 0 1 12 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" 4861871 0.041 0.198 0 0 1 
𝑃𝐶𝑠! 3772082 226.842 1347.049 0 56 94659 
𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 3772082 4.481 114.361 0 0.342 17320.639 
𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 3772082 0.957 28.86 0 0.06 4476.575 
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 845817 11.708 4.99 1 11 38 
𝑡𝑒𝑐ℎ𝑠! 845817 18.853 14.285 1 16 174 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! 1014195 0.192 0.394 0 0 1 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! 4861871 0.791 0.406 0 1 1 
𝑐𝑙𝑜𝑢𝑑!" 4861871 0.020 0.14 0 0 1 
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 4861871 0.083 0.276 0 0 1 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 845817 0.905 0.293 0 1 1 
𝑓𝑖𝑛𝑎𝑛𝑐𝑒! 4606217 0.032 0.177 0 0 1 
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! 4606217 0.095 0.293 0 0 1 
𝑔𝑜𝑣𝑡! 4606217 0.016 0.125 0 0 1 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 4861871 0.449 1.299 0 0 18 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 4861871 2101.489 51360.515 0 0 3000814.02 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" 4861871 2.04 3.883 0 0 31 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" 4861871 10051.199 108648.505 0 0 3000001.61 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! 4722177 0.953 16.665 0.05 0.175 2458.775 
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𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! 4722177 0.185 2.617 -0.077 0.018 500.362 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!- 4861871 0.022 0.145 0 0 1 
𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 104601 0.154 0.88 -0.001 0.008 40.145 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 104601 8.948 44.567 0 0.73 2200 
𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 104601 7125.214 66296.384 0 404.427 2209974 
𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 104601 127.295 695.069 0 8.843 27595 
𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 104601 154.235 1156.658 -21244 5.369 41733 
𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 101723 -0.023 0.663 -63.667 0.055 5.2 
𝑠𝑡𝑎𝑡𝑒! 4710191 

     

𝑛𝑎𝑖𝑐𝑠! 4606217 
     

Notes: All dollar amounts are in millions. All headcounts are in thousands of people. The 𝑦 subscript 
indexes years. For public firms, we observe their characteristics at the yearly level. Appendix Table A2 
shows the correlation between the variables. The rest of Table 2's notes apply. 
 
 

Table 4: Regression Results for the Determinants of Vulnerabilities Across Organizations 
 

  (1) (2) (3)  (4) (5) (6) 
Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!"  𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 
Model  LPM LPM LPM  Poisson Poisson Poisson 
             
𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" -0.047*** -0.047*** -0.033***  -0.194*** -0.158*** -0.124***  

(0.005) (0.008) (0.003)  (0.015) (0.024) (0.007) 
log	(𝑃𝐶𝑠! + 1) 0.014*** 0.011***   0.027*** 0.018***   

(0.002) (0.002)   (0.003) (0.003)  
log	(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! + 1) 0.009 0.000   0.019* 0.009   

(0.005) (0.004)   (0.011) (0.014)  
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 

 
-0.002**   

 
-0.003    

(0.001)   
 

(0.004)  
log	(𝑡𝑒𝑐ℎ𝑠! + 1) 

 
0.009   

 
-0.017    

(0.010)   
 

(0.035)  
𝑐𝑙𝑜𝑢𝑑!" -0.109*** -0.199*** -0.148***  -0.414*** -0.524*** -0.532***  

(0.013) (0.017) (0.011)  (0.048) (0.045) (0.049) 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &  

 
-0.001   

 
0.002  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  
 

(0.011)   
 

(0.059)  
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &  

 
0.016***   

 
0.046***  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  
 

(0.005)   
 

(0.015)  
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 0.050*** 0.026***   0.048*** 0.036**   

(0.005) (0.005)   (0.014) (0.018)  
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 

 
0.019*   

 
0.047    

(0.010)   
 

(0.034)  
𝑓𝑖𝑛𝑎𝑛𝑐𝑒! 0.029*** 0.023***   0.050*** 0.038**   

(0.004) (0.004)   (0.007) (0.016)  
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! -0.021*** -0.009*   -0.031*** -0.036*   

(0.004) (0.005)   (0.009) (0.020)  
𝑔𝑜𝑣𝑡! -0.005 0.008   0.013 0.060**  
 (0.007) (0.009)   (0.016) (0.029)  
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𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.001** 0.002** 0.001***  0.001 0.005 0.006***  
(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" -0.002* -0.001 -0.001***  -0.005** -0.004 -0.003***  
(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 

log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! + 1) 0.022*** 0.014***   0.047*** 0.045***   
(0.003) (0.004)   (0.007) (0.010)  

r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! -0.001*** -0.000   -0.001 0.000   
(0.000) (0.000)   (0.001) (0.001)  

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 0.007 0.007   -0.003 0.008  
 (0.007) (0.008)   (0.013) (0.021)  
        
Constant 0.513*** 0.548*** 0.577***  0.763*** 0.871*** 1.149***  

(0.007) (0.016) (0.001)  (0.017) (0.028) (0.002)    
  

  
 

Month Fixed Effects Y Y Y  Y Y Y 
Organization Fixed Effects   Y    Y 
        
Observations 3,669,972 763,648 4,854,454  3,669,972 763,552 4,667,073 
R-squared 0.266 0.281 0.547  

  
 

Notes: We perform a log transformation for large nonnegative variables, such as employment by adding 
one to the variable and then taking the logarithm. Standard errors are clustered at the state, industry, and 
month level for Columns (1), (2), (4), and (5). Standard errors are clustered at the organization and month 
level for Columns (3) and (6). Standard errors are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
For regression results specific to public firms, please see Appendix Table A4. 
 
 

Table 5 Summary Statistics of the Analysis Sample for Responsiveness 
  

Count Mean STD Min 50% Max 
𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' 161649 20.451 23.349 0 12 197 
𝑓𝑖𝑥𝑒𝑑!' 161649 0.57 0.495 0 1 1 
𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' 161649 1.475 0.805 1 1 4 
𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' 161649 0.735 1.355 0 0 9 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!' 161649 164.111 167.43 0 92 1110 
𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛!' 161649 0.716 0.451 0 1 1 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡!' 161649 0.446 0.497 0 0 1 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦!' 161649 0.549 0.498 0 1 1 
𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐!' 161649 0.9 0.3 0 1 1 
𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' 92543 24.127 22.389 1 17 197 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" 161649 0.032 0.175 0 0 1 
𝑃𝐶𝑠! 125847 219.124 1242.448 0 56 94659 
𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 125847 3.912 50.931 0 0.343 6660.01 
𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 125847 0.822 12.067 0 0.061 1419.834 
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 27886 11.066 4.661 1 11 36 
𝑡𝑒𝑐ℎ𝑠! 27886 17.251 11.62 1 15 157 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! 34713 0.19 0.392 0 0 1 
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𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! 161649 0.785 0.411 0 1 1 
𝑐𝑙𝑜𝑢𝑑!" 161649 0.012 0.111 0 0 1 
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 161649 0.078 0.268 0 0 1 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 27886 0.898 0.303 0 1 1 
𝑓𝑖𝑛𝑎𝑛𝑐𝑒! 153342 0.037 0.188 0 0 1 
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! 153342 0.092 0.29 0 0 1 
𝑔𝑜𝑣𝑡! 153342 0.018 0.132 0 0 1 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 161649 0.322 1.016 0 0 7 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 161649 4.485 36.924 0 0 573 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" 161649 1.521 3.559 0 0 14 
𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" 161649 31.16 106.217 0 0 636.274 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! 157211 0.999 19.182 0.05 0.175 2458.775 
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! 157211 0.202 2.358 -0.077 0.018 158.869 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!- 161649 0.022 0.147 0 0 1 
𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3590 0.144 0.719 0 0.007 18.237 
𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3590 8.864 31.568 0 0.8 428 
𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3590 9283.29 86803.4 0 407.677 2209174 
𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3590 129.323 595.803 0 7.992 11974 
𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3590 171.174 988.796 -2186.659 5.337 22017 
𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!- 3494 -0.002 0.367 -7.969 0.056 1.995 
𝑠𝑡𝑎𝑡𝑒! 156872 

     

𝑛𝑎𝑖𝑐𝑠! 153342 
     

Notes: The 𝑟 subscript indexes fix releases as depicted in Figure 2. 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' counts the number of 
months it takes organization 𝑖 to update their vulnerable Apache version to the fixed version 𝑟 after its 
release. 𝑓𝑖𝑥𝑒𝑑!' is an indicator variable equal to 1 if the organization has updated to the fixed version, 
and 0 if the observation is right-censored. Appendix Table A3 shows the correlation between the 
variables. The rest of notes of Tables 1 and 2 apply. 
 

Table 6: Cox Proportional Hazards Regression Results for Responsiveness  
  

(1) (2) (3) (4) (5) 
 
Model 

Cox Cox Cox Stratified 
Cox 

Stratified 
Cox       

𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' -0.070*** 0.000 0.150*** 0.073*** 0.170***  
(0.011) (0.013) (0.028) (0.017) (0.019) 

𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' -0.017*** -0.034*** -0.053*** -0.066*** -0.098***  
(0.004) (0.005) (0.009) (0.006) (0.007) 

𝑙𝑜𝑔(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!' 	+ 	1) -0.208*** -0.195*** -0.203*** -0.094*** -0.075***  
(0.004) (0.005) (0.011) (0.007) (0.007) 

𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛!' 1.043*** 1.055*** 0.700*** 1.150*** 1.184*** 
 (0.017) (0.020) (0.038) (0.021) (0.022) 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡!' 0.075*** 0.045*** 0.100*** 0.074*** 0.014  

(0.012) (0.014) (0.025) (0.014) (0.015) 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦!' 0.207*** 0.179*** 0.188*** 0.274*** 0.233***  

(0.013) (0.014) (0.027) (0.015) (0.015) 
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𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐!' 0.152*** 0.047 0.045 0.037 -0.062*  
(0.027) (0.031) (0.050) (0.032) (0.032) 

𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!'  -0.020*** -0.020*** -0.018*** -0.003*** -0.003***  
(0.000) (0.000) (0.001) (0.000) (0.000) 

𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" 
 

-0.287*** -0.299* 
 

-0.320**   
(0.108) (0.179) 

 
(0.141) 

log	(𝑃𝐶𝑠! + 1) 
 

-0.020*** -0.013 
  

  
(0.006) (0.012) 

  

log	(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! + 1) 
 

0.000 -0.028 
  

  
(0.019) (0.026) 

  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!   0.015**   
   (0.007)   
log	(𝑡𝑒𝑐ℎ𝑠! + 1)   -0.049   
   (0.063)   
𝑐𝑙𝑜𝑢𝑑!"  0.129* 0.139  -0.410** 
  (0.078) (0.142)  (0.168) 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &   0.037 0.148*   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  (0.030) (0.076)   
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &  

 
-0.025 -0.039 

  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  
 

(0.016) (0.032) 
  

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐!  -0.058** -0.048   
  (0.023) (0.032)   
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!   0.030   
   (0.056)   
𝑓𝑖𝑛𝑎𝑛𝑐𝑒!  -0.064* -0.020   
  (0.035) (0.066)   
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! 

 
0.058** -0.106 

  
  

(0.023) (0.068) 
  

𝑔𝑜𝑣𝑡! 
 

-0.013 -0.034 
  

  
(0.052) (0.102) 

  

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 
 

-0.052*** -0.064*** 
 

-0.044***   
(0.009) (0.017) 

 
(0.014) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" 
 

-0.034*** -0.036*** 
 

-0.052***   
(0.004) (0.008) 

 
(0.006) 

log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! + 1)  -0.048*** -0.019   
  (0.016) (0.022)   
r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡!  -0.002 0.001   
  (0.005) (0.005)   
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!-  0.017 0.013  0.261 
  (0.043) (0.063) 

 
 (0.205) 

Observations 92543 71343 16883 92543 92543 
Notes: Stratification and standard error clustering are at the organization level. Clustering at the month 
level is not performed due to the perfect mapping between releases and the months they occurred. Public 
firm characteristics are not included in the regressions to avoid a significant reduction in the number of 
observations. The rest of the notes of Table 4 apply. 
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Figure 1 Proportion of Organizations with Reported, Disclosed, and Fixed Severe Security 
Vulnerabilities 
 
 

 
 
 
 
 

  
 

 
 
 
 
 
 
  

(a) Reported severe security vulnerabilities 

(b) Reported, undisclosed vulnerabilities (c) Reported & disclosed vulnerabilities 

Decompose 

(d) Disclosed, unfixed vulnerabilities (e) Disclosed & fixed vulnerabilities 

Notes: The fractions of 
organizations for a given 
month in panels (b) and (c) 
may not perfectly sum to the 
fraction of organizations in 
panel (a). This is because 
some organizations may have 
multiple reported 
vulnerabilities within the 
same month, with some being 
disclosed and others 
remaining undisclosed. This 
also applies to the fractions 
presented in panels (c), (d), 
and (e). 

Decompose 
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Figure 2  Proportion of Organizations Operating with Multiple Fixed Severe Security 
Vulnerabilities 

 
 
 

Update window following July 2006 release of 
Apache 1.3.37, 2.0.59, and 2.2.3, which fixed severe 

vulnerability CVE-2006-3747 
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Figure 3 Construction of the Analysis Sample for Responsiveness 

 
(a) Analysis sample for determinants of vulnerabilities,  
     restricted to Adobe 
                                                                                                                    
Organization 𝑖 Month 𝑡 Apache 

Version 
… 

adobe.com 03/2001 1.3.14 … 
adobe.com 04/2001 1.3.19 … 
adobe.com 05/2001 1.3.19 … 
adobe.com 06/2001 1.3.19 … 
adobe.com 07/2001 1.3.19 … 
adobe.com 08/2001 1.3.19 … 
adobe.com 09/2001 1.3.19 … 
adobe.com 10/2001 1.3.19 … 
adobe.com 11/2001 1.3.19 … 
adobe.com 12/2001 1.3.19  
adobe.com 01/2002 1.3.19  
adobe.com 03/2002 1.3.19  
adobe.com 05/2002 1.3.23  
adobe.com 06/2002 1.3.23  
adobe.com 07/2002 1.3.26  
adobe.com 08/2002 1.3.26  
adobe.com 09/2002 1.3.26  
adobe.com 10/2002 1.3.26  
adobe.com 11/2002 1.3.26  
adobe.com 12/2002 1.3.26  

Organization 𝑖 Release 𝑟 𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' 𝑓𝑖𝑥𝑒𝑑!' 𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' … 

 
adobe.com 

 
1.3.24, 03/2002 

 
4 

 
1 

 
1 

 
… 

 
adobe.com 

 
1.3.26, 10/2002 

 
2 

 
0 

 
2 

 
… 

 

 

Apache 1.3.24 released in 
March 2002, which fixed 
severe vulnerability CVE-

2002-0061 in Apache 1.3.19 

Firm used version above 
1.3.24 by July 2002 

(b) Analysis sample for responsiveness 

Apache 1.3.27 released in October 2002, which fixed severe vulnerabilities 
CVE-2002-0839 and CVE-2002-0843 in Apache 1.3.26 

Firm used 1.3.26 until the final recorded observation of Apache usage; therefore 
this update cycle is right-censored 

 



 1 

Appendices 

A.1. Correlation Tables 

Table A1: Correlation Table of the Analysis Sample for Prevalence 
  

(1) (2) (3) (4) (5) (6) 
(1)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!" 1 0.84 0.79 0.7 0.63 0.6 
(2)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!" 0.84 1 0.94 0.74 0.75 0.71 
(3)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 0.79 0.94 1 0.74 0.76 0.75 
(4)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑!" 0.7 0.74 0.74 1 0.98 0.95 
(5)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑!" 0.63 0.75 0.76 0.98 1 0.97 
(6)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 0.6 0.71 0.75 0.95 0.97 1 
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Table A2: Correlation Table of the Analysis Sample for Determinants of Vulnerabilities 

Notes: We dropped public firm characteristics from Compustat to reduce table size. 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) 

(1)𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 1 0.75 -0.07 0.02 0.01 0.01 0.02 0.02 -0.04 -0.01 -0.05 0.05 0.02 0.01 -0.01 0.01 -0.04 -0.02 -0.09 -0.04 0.01 0.01 0.02 

(2)𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 0.75 1 -0.07 0.02 0.01 0.01 0.01 0.01 -0.03 -0.01 -0.05 0.04 0.01 0.01 -0.01 0.01 -0.02 -0.02 -0.06 -0.04 0.02 0.02 0.02 

(3)𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" -0.07 -0.07 1 0.01 0 0 0.02 0.04 0.01 0.01 0.01 0 0 0.01 0 0 -0.02 0 -0.04 -0.01 0 0.01 0 

(4)𝑃𝐶𝑠! 0.02 0.02 0.01 1 0.15 0.11 0.21 0.32 -0.06 -0.03 0 0.21 0.04 0 0.02 0.03 0 0 -0.01 0 0.11 0.12 0.07 

(5)𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 0.01 0.01 0 0.15 1 0.99 0.05 0.09 -0.04 0 0 0.08 0.02 0.01 -0.01 0 0 0 0 0 0.17 0.4 0.1 

(6)𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.01 0.01 0 0.11 0.99 1 0.03 0.07 -0.03 0 0 0.07 0.01 0.02 -0.01 0 0 0 0 0 0.13 0.34 0.09 

(7)𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 0.02 0.01 0.02 0.21 0.05 0.03 1 0.85 -0.04 -0.03 0.03 0.34 0.43 -0.07 0.03 0 0.03 0.01 0.02 0 0.09 0.07 0.05 

(8)𝑡𝑒𝑐ℎ𝑠! 0.02 0.01 0.04 0.32 0.09 0.07 0.85 1 -0.04 -0.04 0.01 0.38 0.28 -0.07 0.03 0.02 0.01 0 -0.01 -0.01 0.13 0.11 0.06 

(9)𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! -0.04 -0.03 0.01 -0.06 -0.04 -0.03 -0.04 -0.04 1 
 

-0.02 -0.09 -0.02 -0.02 0.03 -0.01 0 0 0.01 0 -0.01 -0.03 -0.03 

(10)𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! -0.01 -0.01 0.01 -0.03 0 0 -0.03 -0.04 
 

1 0.01 -0.05 -0.01 -0.02 -0.03 0 0.01 0 -0.01 0 -0.01 0 -0.01 

(11)𝑐𝑙𝑜𝑢𝑑!" -0.05 -0.05 0.01 0 0 0 0.03 0.01 -0.02 0.01 1 0.04 0.01 0 0 -0.01 0.11 0.02 0.13 0.04 0 0.01 0.03 

(12)ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 0.05 0.04 0 0.21 0.08 0.07 0.34 0.38 -0.09 -0.05 0.04 1 0.19 0.01 -0.06 0.01 0.02 0.01 -0.01 0 0.09 0.11 0.15 

(13)𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 0.02 0.01 0 0.04 0.02 0.01 0.43 0.28 -0.02 -0.01 0.01 0.19 1 0.01 0.02 -0.02 -0.01 0 -0.01 0 0.02 0.02 0.02 

(14)𝑓𝑖𝑛𝑎𝑛𝑐𝑒! 0.01 0.01 0.01 0 0.01 0.02 -0.07 -0.07 -0.02 -0.02 0 0.01 0.01 1 -0.06 -0.02 0 0 -0.06 -0.01 0 0.03 0.05 

(15)ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! -0.01 -0.01 0 0.02 -0.01 -0.01 0.03 0.03 0.03 -0.03 0 -0.06 0.02 -0.06 1 -0.04 0 0 0.14 -0.03 0 -0.01 -0.04 

(16)𝑔𝑜𝑣𝑡! 0.01 0.01 0 0.03 0 0 0 0.02 -0.01 0 -0.01 0.01 -0.02 -0.02 -0.04 1 -0.01 0 -0.07 -0.01 0 -0.01 -0.02 

(17)𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.04 -0.02 -0.02 0 0 0 0.03 0.01 0 0.01 0.11 0.02 -0.01 0 0 -0.01 1 0.2 0.31 0.08 0 0 0.02 

(18)𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.02 -0.02 0 0 0 0 0.01 0 0 0 0.02 0.01 0 0 0 0 0.2 1 0.06 0.27 0 0 0 

(19)𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" -0.09 -0.06 -0.04 -0.01 0 0 0.02 -0.01 0.01 -0.01 0.13 -0.01 -0.01 -0.06 0.14 -0.07 0.31 0.06 1 0.17 0 0 0.01 

(20)𝑛𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" -0.04 -0.04 -0.01 0 0 0 0 -0.01 0 0 0.04 0 0 -0.01 -0.03 -0.01 0.08 0.27 0.17 1 0 0 0.01 

(21)𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! 0.01 0.02 0 0.11 0.17 0.13 0.09 0.13 -0.01 -0.01 0 0.09 0.02 0 0 0 0 0 0 0 1 0.54 0.12 

(22)𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! 0.01 0.02 0.01 0.12 0.4 0.34 0.07 0.11 -0.03 0 0.01 0.11 0.02 0.03 -0.01 -0.01 0 0 0 0 0.54 1 0.2 

(23)𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 0.02 0.02 0 0.07 0.1 0.09 0.05 0.06 -0.03 -0.01 0.03 0.15 0.02 0.05 -0.04 -0.02 0.02 0 0.01 0.01 0.12 0.2 1 
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Table A3: Correlation Table of the Analysis Sample for Responsiveness 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
(1)𝑡𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' 1 -0.02 -0.23 -0.05 0.18 -0.28 0.16 -0.01 0.05 0.51 
(2)𝑓𝑖𝑥𝑒𝑑!' -0.02 1 -0.24 0.04 -0.27 0.23 0.08 0.18 -0.09 -0.02 
(3)𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' -0.23 -0.24 1 0.32 0.02 0.15 -0.36 -0.22 0.2 -0.04 
(4)𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' -0.05 0.04 0.32 1 -0.11 0.32 -0.14 0.28 0.02 0.04 
(5)𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!' 0.18 -0.27 0.02 -0.11 1 -0.54 0.04 -0.15 0.01 0.29 
(6)𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛!' -0.28 0.23 0.15 0.32 -0.54 1 -0.16 0.27 -0.13 -0.06 
(7)ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡!' 0.16 0.08 -0.36 -0.14 0.04 -0.16 1 -0.39 0.04 0.07 
(8)ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦!' -0.01 0.18 -0.22 0.28 -0.15 0.27 -0.39 1 -0.3 0 
(9)𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐!' 0.05 -0.09 0.2 0.02 0.01 -0.13 0.04 -0.3 1 -0.04 
(10)𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!' 0.51 -0.02 -0.04 0.04 0.29 -0.06 0.07 0 -0.04 1 

Notes: To reduce the table size, we have kept only the outcome variable, the event variable, and the characteristics of the updates.
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A.2. Determinants of Vulnerabilities Analysis for Public Firms 

Table A4: Regression Results for the Determinants of Vulnerabilities Across Public Firms 
 

  (1) (2)  (3) (4) 
Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!"  𝑛𝑢𝑚𝑏𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 
Model  LPM LPM  Poisson Poisson 
           
𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" -0.068*** -0.038***  -0.229*** -0.102***  

(0.016) (0.009)  (0.054) (0.025) 
log	(𝑃𝐶𝑠! + 1) 0.009 

 
 0.020 

 
 

(0.007) 
 

 (0.019) 
 

log	(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! + 1) -0.001 
 

 0.001 
 

 
(0.006) 

 
 (0.021) 

 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 0.005 
 

 0.019** 
 

 
(0.004) 

 
 (0.008) 

 

log	(𝑡𝑒𝑐ℎ𝑠! + 1) -0.044 
 

 -0.165*** 
 

 
(0.031) 

 
 (0.060) 

 

𝑐𝑙𝑜𝑢𝑑!" -0.179*** -0.165***  -0.429*** -0.525***  
(0.037) (0.037)  (0.085) (0.094) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &  0.057 
 

 0.235 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  (0.035) 
 

 (0.178) 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &  0.000 
 

 0.008 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  (0.017) 
 

 (0.064) 
 

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 0.031 
 

 0.001 
 

 
(0.019) 

 
 (0.052) 

 

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 0.060* 
 

 0.098 
 

 
(0.030) 

 
 (0.098) 

 

𝑓𝑖𝑛𝑎𝑛𝑐𝑒! -0.008 
 

 -0.075 
 

 
(0.023) 

 
 (0.058) 

 

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! -0.004 
 

 0.081 
 

 
(0.058) 

 
 (0.131) 

 

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.001 -0.003  -0.001 -0.004  
(0.004) (0.002)  (0.011) (0.005) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" -0.000 0.001  0.005 0.009*  
(0.003) (0.002)  (0.006) (0.005) 

log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! + 1) 0.005 
 

 0.036* 
 

 
(0.008) 

 
 (0.021) 

 

r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! -0.000 
 

 -0.001 
 

 
(0.000) 

 
 (0.001) 

 

𝑐𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# -0.004 -0.010  0.029 0.032*  
(0.009) (0.014)  (0.021) (0.019) 

log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢!# + 1) 0.012 -0.003  0.032 0.008  
(0.010) (0.015)  (0.033) (0.035) 
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log	(𝑡𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢!# + 1) 0.010 0.001  0.049** 0.016  
(0.007) (0.013)  (0.020) (0.033) 

log	(𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢!# + 1) -0.006 -0.010  -0.049*** 0.011  
(0.009) (0.012)  (0.017) (0.030) 

𝑖𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 0.000 0.000  -0.000 0.000  
(0.000) (0.000)  (0.000) (0.000) 

𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 0.017 -0.000  0.097 0.001  
(0.025) (0.007)  (0.067) (0.035) 

      
Constant 0.541*** 0.661***  0.811*** 1.072***  

(0.057) (0.065)  (0.134) (0.181)    
 

  

Month Fixed Effects Y Y  Y Y 
Organization Fixed Effects 
 

 Y   Y 
Observations 56,077 101,555  55,837 96,266 
R-squared 0.339 0.593  

  

Notes: Standard errors are clustered at the state, industry, and month level for Columns (1) and (3), and are clustered 

at the organization and month level for Columns (2) and (4). The rest of the notes of Table 4 apply. 
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A.3. Results for 2013—2018 

Table A5: Regression Results for the Determinants of Vulnerabilities Across Organizations, 2013—2018  
 

  (1) (2) (3)  (4) (5) (6) 
Outcome 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!"  𝑛𝑢𝑚𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝐹𝑖𝑥𝑒𝑑!" 
Model  LPM LPM LPM  Poisson Poisson Poisson 
  

  
  

  
 

𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" -0.067*** -0.055*** -0.035***  -0.204*** -0.133** -0.108***  
(0.012) (0.017) (0.004)  (0.047) (0.055) (0.017) 

log	(𝑃𝐶𝑠! + 1) 0.020*** 0.019***   0.035*** 0.037***   
(0.004) (0.004)   (0.010) (0.008)  

log	(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! + 1) 0.019 0.002   0.016 -0.007   
(0.013) (0.009)   (0.029) (0.029)  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 
 

-0.006**   
 

-0.015**    
(0.002)   

 
(0.006)  

log	(𝑡𝑒𝑐ℎ𝑠! + 1) 
 

0.028   
 

0.016    
(0.020)   

 
(0.057)  

𝑐𝑙𝑜𝑢𝑑!" -0.137*** -0.226*** -0.181***  -0.483*** -0.591*** -0.597***  
(0.013) (0.018) (0.015)  (0.063) (0.061) (0.061) 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &  
 

-0.049   
 

-0.174**  
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  

 
(0.031)   

 
(0.081)  

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &  
 

-0.001   
 

0.025  
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  

 
(0.011)   

 
(0.021)  

ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐! 0.125*** 0.070***   0.172*** 0.135***   
(0.009) (0.009)   (0.031) (0.035)  

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛! 
 

0.036   
 

0.075*    
(0.021)   

 
(0.045)  

𝑓𝑖𝑛𝑎𝑛𝑐𝑒! 0.052*** 0.020   0.032** 0.019   
(0.008) (0.015)   (0.015) (0.034)  

ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒! -0.033** 0.017   -0.046 -0.047   
(0.013) (0.015)   (0.030) (0.052)  

𝑔𝑜𝑣𝑡! -0.001 -0.002   0.115*** 0.134*  
 (0.014) (0.020)   (0.039) (0.069)  
𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.000 0.004*** 0.000  0.005** 0.010*** 0.002*  

(0.001) (0.001) (0.000)  (0.002) (0.003) (0.001) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!" -0.002 -0.001 -0.000  -0.005* -0.003 -0.001  

(0.001) (0.001) (0.000)  (0.003) (0.004) (0.001) 
log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! + 1) 0.035*** 0.022***   0.067*** 0.069***   

(0.005) (0.008)   (0.017) (0.023)  
r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡! -0.002** -0.001   -0.004* -0.004   

(0.001) (0.001)   (0.002) (0.003)  
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.006 -0.015   -0.038 -0.046  
 (0.013) (0.019)   (0.025) (0.048)  
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Constant 0.364*** 0.429*** 0.460***  0.407*** 0.528*** 1.189***  

(0.012) (0.040) (0.001)  (0.029) (0.076) (0.005)    
  

  
 

Month Fixed Effects Y Y Y  Y Y Y 
Organization Fixed Effects   Y    Y 
        
Observations 983,461 203,694 1,263,331  983,461 203,694 993,032 
R-squared 0.194 0.170 0.789  

  
 

                     
                    Notes of Table 4 apply.
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Table A6: Cox Proportional Hazards Regression Results for Responsiveness, 2013—2018   
  

(1) (2) (3) (4) (5) 
 
Model 

Cox Cox Cox Stratified 
Cox 

Stratified 
Cox       

𝑠𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' 1.173*** 1.286*** 2.217*** 1.751 1.530  
(0.083) (0.093) (0.215) (1.125) (1.187) 

𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐹𝑖𝑥𝑒𝑑!' 0.412*** 0.524*** 0.349* 0.116 0.215  
(0.110) (0.143) (0.188) (0.238) (0.301) 

𝑙𝑜𝑔(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!' 	+ 	1) -0.182*** -0.164*** -0.113* -0.209 -0.236  
(0.022) (0.023) (0.060) (0.170) (0.175) 

𝑠𝑎𝑚𝑒𝑀𝑎𝑗𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛!' 0.013 -0.157 -0.329* 3.928*** 3.515*** 
 (0.109) (0.131) (0.197) (0.716) (0.852) 
ℎ𝑖𝑔ℎ𝐼𝑚𝑝𝑎𝑐𝑡!' 0.681 0.308 3.511*** 4.643 3.134  

(0.621) (0.806) (1.055) (3.281) (3.800) 
ℎ𝑖𝑔ℎ𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦!' -0.022*** -0.023*** -0.027*** -0.050** -0.055**  

(0.002) (0.002) (0.004) (0.024) (0.027) 
𝑛𝑜𝑡𝑂𝑆𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐!' 1.173*** 1.286*** 2.217*** 1.751 1.530  

(0.083) (0.093) (0.215) (1.125) (1.187) 
𝑝𝑟𝑒𝑣𝑇𝑖𝑚𝑒𝑇𝑜𝐹𝑖𝑥!'  0.412*** 0.524*** 0.349* 0.116 0.215  

(0.110) (0.143) (0.188) (0.238) (0.301) 
𝑛𝑒𝑤𝑈𝑠𝑒𝑟!" 

 
0.147 -0.380 

 
-13.997***   

(0.357) (0.606) 
 

(1.252) 
log	(𝑃𝐶𝑠! + 1) 

 
-0.040 -0.006 

  
  

(0.025) (0.054) 
  

log	(𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! + 1) 
 

0.101 -0.033 
  

  
(0.089) (0.124) 

  

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!   0.024   
   (0.032)   
log	(𝑡𝑒𝑐ℎ𝑠! + 1)   0.093   
   (0.278)   
𝑐𝑙𝑜𝑢𝑑!"  0.551*** 0.452**  0.772 
  (0.087) (0.178)  (1.760) 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &   -0.104 -0.542   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0  (0.144) (0.348)   
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &   0.080 0.082   

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0   (0.069) (0.148)   
ℎ𝑖𝑔ℎ𝑇𝑟𝑎𝑓𝑓𝑖𝑐!  -0.109 -0.305**   
  (0.120) (0.139)   
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛!   0.043   
   (0.217)   
𝑓𝑖𝑛𝑎𝑛𝑐𝑒!  0.051 0.252   
  (0.146) (0.258)   
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒!  0.103 -0.340    

 (0.100) (0.342)   
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𝑔𝑜𝑣𝑡!  -0.057 -0.660*    
 (0.210) (0.391)   

𝑐𝑜𝑢𝑛𝑡𝑏𝐵𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!"  -0.021 0.028  -0.191  
 (0.017) (0.038)  (0.143) 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦!"  -0.011 -0.020  -0.068  
 (0.008) (0.015)  (0.074) 

log	(𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑀𝑖𝑛𝑡! + 1)  -0.019 -0.092   
  (0.074) (0.104)   
r𝑒𝑣𝑒𝑛𝑢𝑒𝑀𝑖𝑛𝑡!  0.015 0.021   
  (0.015) (0.013)   
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!-  -0.045 0.010  -17.180*** 
  (0.188) (0.248)  (1.651) 
      
Observations 9941 8041 1673 9941 9941 

 
Notes of Table 6 apply.
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A.4. Backporting 

Backporting, a practice of taking security fixes from a more recent version of software and applying them 
to older versions, creates a measurement problem for our analysis of vulnerability prevalence. 
Backporting is often done to ensure that systems which for various reasons cannot upgrade to the latest 
version of software can still benefit from the latest security patches. The challenge for our analysis arises 
from the fact that backported versions of Apache, despite including fixes, often retain their original 
version number in server headers. This can lead to the misinterpretation that an organization is neglecting 
security fixes when, in reality, they are applying fixes through backports.13 Additionally, our dataset is 
unable to detect when a firm uses a backported version of Apache. Despite the measurement issue, we 
believe that this does not significantly undermine the validity of our results for several reasons. 
 
First, backports are not always available. The development of backported versions of Apache server 
software is not through the ASF but is at the discretion of the developers of a system’s operating system. 
To the best of our knowledge, the most popular operating system for hosting websites, Windows Server, 
which comprises 42% of market share for website hosting as of 2024,14 does not practice backporting of 
Apache server software. Among the other operating systems that are popular for hosting server software, 
backporting of Apache server software has not always been available and has been practiced in an uneven 
manner.15 For example, to the best of our knowledge, Ubuntu, the second most popular operating system 
for websites which comprises 32% of the website market share as of 2024,16 has consistently provided 
backports of Apache vulnerabilities starting from Ubuntu 6.06 (Dapper Drake), which was released in 
June 2006.17 Debian, the third most popular operating system comprising 9% of website market share as 
of 2024, only began officially backporting in 2010.18 We do not observe substantial changes in 
vulnerability prevalence or organizations’ responsiveness before or after 2006 or before or after 2010 
when Ubuntu and Debian started backporting. 
 
Second, backports do not provide long-term security or stability. According to developers of Ubuntu, the 
most popular operating system for website hosting that offers backporting, “Unlike the packages released 
with Ubuntu, backports do not come with any security support guarantee. The Ubuntu Security Team 
does not update packages in backports…” and backports may interact negatively with other older 
software on the user's system in ways that the developers have not anticipated.19 In addition, operating 
system distributors only backport a subset of known vulnerabilities to previous software versions for a 
limited duration. For example, Ubuntu focuses on backporting only the fixes for the most severe 

 
13 A similar concern about such false-positive mismeasurement has been discussed regarding “scanners,” which 
examine the code running on an operating system and provide the owner with alerts regarding the presence of 
potentially insecure software. 
14 https://www.wappalyzer.com/technologies/operating-systems/ 
15 This could be due to the practice being viewed negatively by some in early years. For example, in 2004, the CTO 
of SUSE remarked that backporting was bad for the open-source ecosystem since it prevented standardization ( 
https://www.datamation.com/applications/linux-creator-calls-backporting-good-thing/). 
16 See https://www.wappalyzer.com/technologies/operating-systems/. In addition, OpenLogic has conducted a 
survey of enterprises and has also found that Ubuntu and Debian are the two most popular Linux distributions used. 
See https://www.openlogic.com/blog/top-enterprise-linux-distributions#:~:text=Amazon% 
20Linux%2C%20Rocky%20Linux%2C%20and,than%20ever%20to%20choose%20from!  
17 https://ubuntu.com/security/cves?q=&package=apache2&priority=&version=dapper&status= 
18 https://wiki.debian.org/Backports 
19 See https://help.ubuntu.com/community/UbuntuBackports. Similar warnings have been posted by Debian’s 
developers, “Backports cannot be tested as extensively as Debian stable, and backports are provided on an as-is 
basis, with risk of incompatibilities with other components in Debian stable. Use with care!” 
(https://backports.debian.org/). 
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vulnerabilities, and the support lasts between five to ten years for each Ubuntu version, depending on the 
support tier to which a user belongs. It is fair to say that users of older software, even when diligently 
applying backports, should expect a continued degradation of the software's security, stability, and 
performance, as well as that of the system. 
 
Third, the availability of backports does not guarantee that users will apply them or do so promptly. 
Backported versions of Apache are not installed automatically or by default on the popular operating 
systems we have studied. For example, although Ubuntu and Debian provide backported versions of 
Apache that address severe vulnerabilities, these are not installed by default for their users. Users must 
either manually install the backports or modify their system settings to allow automatic installation of 
these backported versions. West and Moore (2022) studied user behavior regarding the application of 
Ubuntu backports of patches for OpenSSH, an open-source connectivity tool for remote login with the 
SSH protocol, which allows observation of the status of backport application through OpenSSH banners. 
They found that a significant fraction of machines did not apply all available security backports. 
Throughout their sample period from 2015 to 2019, during times when relatively few backports were 
issued, the population was able to catch up, with the unpatched share falling to around 20% at one point 
in early 2018. However, in instances when multiple backports were issued consecutively, the servers 
could not keep up with applying all the patches, and the unpatched share consistently remained above 
60% in the entire 2016. 
 
Lastly, the practice of backporting does not alter the fact that users are employing outdated server 
software, often reflecting the obsolescence of their entire technology stack, which can present a multitude 
of problems. For the popular Linux distributions we have reviewed, once developers release a new 
version of the operating system, it is generally fixed at that point and does not allow for newer versions of 
the included software packages.20 This means that updating to a newer Apache version is only possible 
when the entire operating system is updated. Hence, using an outdated Apache version, even if it is 
patched via backports, often implies the continued use of an outdated operating system and other legacy 
packages, further compounding the deterioration of the server software's security, stability, and 
performance, as well as that of the entire system. 
 
Overall, while we believe backporting can alleviate some security concerns, it does not alter the core 
findings of our paper regarding firms’ security practices in using server software. The overall prevalence 
of vulnerabilities within the user base is not likely to be fully explained by backporting.21 Within the 
subset of users employing backporting, many continue to use older versions of Apache software for 
extended periods, which may harbor multiple vulnerabilities susceptible to attacks, and may also 
experience diminished security and stability over time. However, considering that our findings on the 
vulnerability prevalence among Apache users represent an upper bound of the actual attack surface, we 
have been careful in our discussion not to equate the vulnerability frequency in the base versions of 
Apache with the attack surface, due to the possibility that some vulnerabilities may have been addressed 
in the short run through backports. 
 
 

 
20 https://help.ubuntu.com/community/UbuntuBackports 
21 Tajalizadehkhoob et al. (2017) adopt the generous assumption that systems are always patched when users operate 
popular operating systems within the support period for backporting. Despite this assumption, they found that 
144,637 (71%) out of the 203,455 domains, for which they had server software version information in March 2016, 
were unpatched. Although their study encompasses various types of server software and considers both severe and 
non-severe vulnerabilities within a short measurement period—differing from this paper—their findings corroborate 
that backporting does not fully account for the observed vulnerability prevalence. 


